Theoretical Calculation of the Optical Absorption of Fractal Colloidal Aggregates Using a Multiple Scattering Formalism

  • L. Fonseca
  • L. Cruz
  • W. Vargas
  • M. Gomez
Part of the Condensed Matter Theories book series (COMT, volume 8)


The optical response of fractal aggregated gold colloids is described considering the interaction between particles due to two separated contributions resulting from short and long range effects. The systems will be studied in an effective medium formalism, where the scattering units are clusters of two spheres. The short range interaction will be taken into account via cluster effects, while the long range interaction will be taken into account by considering a multiple scattering effective medium analysis.


Gold Particle Gold Colloid Effective Index Incident Field Aggregate Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Maxwell-Garnett, Colours in metal glasses and in metallic films, Philos.Trans.R.Soc.London 203:385 (1904).ADSCrossRefGoogle Scholar
  2. 2.
    See for example, R. Landauer, Electrical conductivity in inhomogeneous media, AIP Conference Proc. 40:2 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    C.G. Blatchford, J.R. Campbell, and J.A. Creighton, Plasma resonance-enhanced raman scattering by adsorbates on gold colloids: the effects of aggregation, Surface Sci. 120:435 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    R.P. Devaty and A.J. Sievers, Far-infrared absorption by small silver particles in gelatin, Phys.Rev. B41:7421 (1990).ADSGoogle Scholar
  5. 5.
    D.A. Weitz and M. Oliveria, Fractal structures formed by Kinetic Aggregation of aqueous gold colloids, Phys.Rev. Letters. 52:1433 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Weitz, J.S. Huang, M. Lin, and J. Sung, Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids, Phys.Rev.Letters B54:1416 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    F. Claro and R. Fuchs, Collective surface modes in fractal clusters of spheres, Phys.Rev. B44:4109 (1991) and references there included.ADSGoogle Scholar
  8. 8.
    H.M. Lindsay, M.Y. Lin, D.A. Weitz, P. Sheng, Z. Chen, R. Klein, and P. Meakin, Properties of fractal colloid aggregates, Faraday Discuss.Chem.Soc. 83:153 (1987).CrossRefGoogle Scholar
  9. 9.
    V.K. Varadan, V. N. Bringi, and V.V. Varadan, Coherent electromagnetic wave propagation through randomly distributed dielectric scatterers, Phys.Rev. D19:2480 (1979).ADSGoogle Scholar
  10. 10.
    P.C. Waterman, Symmetry, unitarity, and geometry in electromagnetic scattering, Phys.Rev. D3:825 (1971).ADSGoogle Scholar
  11. 11.
    B. Peterson and S. Strom, T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3), Phys.Rev. D8:3661 (1973).MathSciNetADSGoogle Scholar
  12. 12.
    O.R. Cruzan, Translational addition theorems for spherical vector wave equations, O.Appl.Math 20:33 (1962).MathSciNetMATHGoogle Scholar
  13. 13.
    V.V. Varadan, Elastic wave scattering, in: “Acoustic Electro-magnetic and Elastic Wave Scattering”, V.K. Varadan and V.V. Varadan, ed., Pergamon Press, New York (1980).Google Scholar
  14. 14.
    P.B. Johnson and R.W. Christy, Optical constants of the noble metals, Phys.Rev. B6:4370, (1972).ADSGoogle Scholar
  15. 15.
    D.A. Weitz, M.Y. Lin, and C.J. Sandroff, Colloidal aggregation revisited: new insights based on fractal structure and surface-enhanced Raman scattering, Surface Sci. 158:147 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • L. Fonseca
    • 1
  • L. Cruz
    • 1
  • W. Vargas
    • 2
  • M. Gomez
    • 1
  1. 1.Dept. of PhysicsUniversity of Puerto RicoRio PiedrasPuerto Rico
  2. 2.Dept. de FisicaUniversidad de Costa RicaSan JoseCosta Rica

Personalised recommendations