Antigen Processing and Presentation the Role of the Endoplasmic Reticulum

  • Vincenzo Cerundolo
Part of the Subcellular Biochemistry book series (SCBI, volume 21)


The immune system has evolved to recognize and destroy pathogens. Invasion by extracellular microorganisms is mainly controlled by B lymphocytes which, using surface immunoglobulins (Ig) as receptors, recognize antigens in their native conformation either free in solution or on the surface of cells. Invasion by intracellular parasites is mainly controlled by cytotoxic T lymphocytes (CTL), which recognize foreign protein antigens on the surface of infected cells by a highly specific receptor and lyse the cells. Both CTL and B lymphocyte responses are specifically enhanced by lymphokines released by antigen-specific T helper cells. Unlike Ig, the T-cell receptor of both CTL and T helper cells does not recognize native proteins but it recognizes a binary complex formed by the association of peptides, derived from degradation of target proteins, with class I and class II molecules encoded in the major histocompatibility complex (MHC). Processing of target proteins occurs through two distinct pathways. Exogenous proteins are degraded in an endolysosome compartment, which intersects the biosynthetic pathway of MHC class II molecules (Neefjes et al., 1990). Thus, peptides derived from degradation of endocytosed proteins bind to MHC class II molecules. Newly synthesized proteins are degraded in the cytosol, and peptides generated from them are transported into the endoplasmic reticulum (ER) where they associate with MHC class I molecules. This review focuses on the latter pathway dealing with processing and presentation of intracellular proteins.


Major Histocompatibility Complex Major Histocompatibility Complex Class Intracellular Antigen Ethyl Methane Sulfonate Free Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, K., Cresswell, P., Gammon, M., Hermes, J., Williamson, A., and Zweerink, H., 1991, Endogenously synthesized peptide with an endoplasmic reticulum signal sequence sensitizes antigen processing mutant cells to class I-restricted cell-mediated lysis, J. Exp. Med. 174:489–492.PubMedCrossRefGoogle Scholar
  2. Attaya, M., Jameson, S., Martinez, C., Hermel, E., Aldrich, C., Forman, J., Fischer Lindahl, K., Bevan, M., and Monaco, J., 1992, HAM-2 corrects the class I antigen-processing defect in RMA-S cells, Nature 355:647–649.PubMedCrossRefGoogle Scholar
  3. Bell, A., Buckel, J., Groarke, J., Hope, J., Kingsley, D., and Hermodson, M., 1986, The nucleotide sequences of the rbsD, rbsA and rbsC genes of Escherichia coli Kl2, J. Biol. Chem. 261:7652–7658.PubMedGoogle Scholar
  4. Bennink, J., Yewdell, J., and Gerard, W., 1982, A viral polymerase involved in recognition of influenza-infected cells by a cytotoxic T cell clone, Nature 296:75–76.PubMedCrossRefGoogle Scholar
  5. Bjorkman, P., Saper, M., Samraoui, B., Bennett, W., Strominger, J., and Wiley, D., 1987a, Structure of the human class I histocompatibility antigen HLA-A2, Nature 329:506–512.PubMedCrossRefGoogle Scholar
  6. Bjorkman, P., Saper, M., Samraoui, B., Bennett, W., Strominger, J., and Wiley, D., 1987b, The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens, Nature 329:512–518.PubMedCrossRefGoogle Scholar
  7. Braciale, T, Braciale, V., Winkler, M., Strynowski, I., Hood, L., Sabrook, J., and Gething, M., 1987, On the role of the transmembrane anchor sequence of influenza hemagglutinin in target cell recognition by class I MHC restricted, hemagglutinin-specific cytotoxic T lymphocytes, J. Exp. Med. 166:678–692.PubMedCrossRefGoogle Scholar
  8. Brown, M., Driscoll, J., and Monaco, J., 1991, Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic Proteinase) complexes, Nature 353:355–357.PubMedCrossRefGoogle Scholar
  9. Cerundolo, V., Alexander, J., Anderson, K., Lamb, C., Cress well, P., McMichael, A., Gotch, F., and Townsend, A., 1990, Presentation of viral antigens controlled by a gene in the MHC, Nature 345:449–456.PubMedCrossRefGoogle Scholar
  10. Cerundolo, V., Elliott, T., Elvin, J., Bastin, J., Rammensee, H.-G., and Townsend, A., 1991, The binding affinity and dissociation rates of peptides for class I MHC molecules, Eur. J. Immunol. 21:2069–2075.PubMedCrossRefGoogle Scholar
  11. Chen, C., Chin, J., Ueda, K., Clark, D., Pastan, I., Gottesman, M., and Roninson, I., 1986, Internal duplication and homology with bacterial transport proteins in the mdrl (P glycoprotein) gene from multidrug resistance human gene, Cell 47:381–386.PubMedCrossRefGoogle Scholar
  12. Colonna, M., Bresnahan, M., Bahram, S., and Strominger, J., 1992, Allelic variants of the human putative transporter involved in antigen processing, Proc. Natl. Acad. Sci. USA 89:3932–3936.PubMedCrossRefGoogle Scholar
  13. Cox, J., Yewdell, J., Eisenlohr, L., Johnson, P., and Bennink, J., 1990, Antigen presentation requires transport of MHC class I molecules from the endoplasmic reticulum, Science 247:715–718.PubMedCrossRefGoogle Scholar
  14. Cox, J., Bennink, J., and Yewdell, J., 1991, Retention of adenovirus E19 glycoprotein in the endoplasmic reticulum is essential to its ability to block antigen presentation, J. Exp. Med. 174:1629–1637.PubMedCrossRefGoogle Scholar
  15. DeMars, R., Rudersdorf, R., Chang, C., Peterson, J., Strandtmann, J., Korn, N., Sidwell, B., and Orr, H., 1985, Mutations that impair a post transcriptional step in expression of HLA-A and-B antigens, Proc. Natl. Acad. Sci. USA 82:8183–8187.PubMedCrossRefGoogle Scholar
  16. Deverson, E., Gow, I., Coadwell, J., Monaco, J., Butcher, G., and Howard, J., 1990, MHC class II region encoding proteins related to the multidrug resistance family of transmembrane transporters, Nature 348:738–741.PubMedCrossRefGoogle Scholar
  17. Dick, L., Moomaw, C., DeMartino, G., and Slaughter, C., 1991, Degradation of oxidised insulin B chain by the multiproteinase complex macropain (proteasome), Biochemistry 30:2725–2734.PubMedCrossRefGoogle Scholar
  18. Elliott, T., Cerundolo, V., Elvin, J., and Townsend, A., 1991, Peptide-induced conformational change of the class I heavy chain, Nature 351:402–405.PubMedCrossRefGoogle Scholar
  19. Elliott, T., Elvin, J., Cerundolo, V., Allen, H., and Townsend, A., 1992, Structural requirements for the peptide induced conformational change of free MHC class I heavy chains, Eur. J. Immunol. 22:2085–2091.PubMedCrossRefGoogle Scholar
  20. Falk, K., Rötzschke, O., and Rammensee, H.-G., 1990, Cellular composition governed by major histocompatibility complex class I molecules, Nature 348:248–251.PubMedCrossRefGoogle Scholar
  21. Falk, K., Rötzschke, O., Stevanovic, S., Jung, G., and Rammensee, H.-G., 1991a, AUele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules, Nature 351:290–296.PubMedCrossRefGoogle Scholar
  22. Falk, K., Rötzschke, O., Deres, K., Metzger, I, Jung, G., and Rammensee, H.-G., 1991b, Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast, J. Exp. Med. 174:425–434.PubMedCrossRefGoogle Scholar
  23. Garrett, T., Saper, M., Bjorkman, P., Strominger, J., and Wiley, D., 1989, Specificity pockets for the side chains of peptide antigens in HLA-Aw68, Nature 342:692–696.PubMedCrossRefGoogle Scholar
  24. Glynne, R., Powis, S., Beck, S., Kelly, A., Kerr, L., and Trowsdale, J., 1991, A proteasome-related gene between the two ABC transporter loci in the class II region of the human MHC, Nature 353:357–360.PubMedCrossRefGoogle Scholar
  25. Gould, K., Cossins, J., Bastin, J., Brownlee, G., and Townsend, A., 1989, A 15 amino acid fragment of influenza nucleoprotein synthesized in the cytoplasm is presented to class I-restricted cyiotoxic T lymphocytes, J. Exp. Med. 170:1051–1056.PubMedCrossRefGoogle Scholar
  26. Gros, P., Croop, J., and Housman, D., 1986, Mammalian multi drug resistance gene: Complete cDNA sequence indicates strong homology to bacterial transport proteins, Cell 47:371–380.PubMedCrossRefGoogle Scholar
  27. Heinemeyer, W., Kleinschmidt, J., Sasidiwsky, J., Escher, C., and Wolf, D., 1991, Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional Proteinase: Mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival, EMBO J. 10:555–567.PubMedGoogle Scholar
  28. Henderson, R., Michel, H., Sakaguchi, K., Shabanowitz, J., Appella, E., Hunt, D., and Engelhard, V., 1992, HLA-A2.1-associated peptides from a mutant cell line: A second pathway of antigen presentation, Science 255:1264–1266.PubMedCrossRefGoogle Scholar
  29. Higgins, C., Haag, P., Nikaido, K., Ardeshir, F., Garcia, G., and Ames, G., 1982, Complete nucleotide sequence and identification of the histidine transport Operon of S. typhimurium, Nature 298:723–727.PubMedCrossRefGoogle Scholar
  30. Higgins, C., Gallagher, M., Mimmack, M., and Pearce, S., 1988, A family of closely related ATP-binding subunits from prokaryotic and eukaryotic cells, BioEssay 8:111–116.CrossRefGoogle Scholar
  31. Higgins, C., Hyde, S., Mimmack, M., Gileadi, U., Gill, D., and Gallagher, M., 1990, Binding 2protein dependent transport system, J. Bioenerg. Biomembr. 22:571–592.PubMedCrossRefGoogle Scholar
  32. Hiles, I., Gallagher, M., Jamieson, D., and Higgins, C., 1987, Molecular characterization of the oligo-peptide permease of Salmonella typhimurium, J. Mol. Biol. 195:125–129.PubMedCrossRefGoogle Scholar
  33. Hyde, S., Emsley, P., Hartshorn, M., Mimmack, M., Gileadi, U., Pearce, R., Gallagher, P., Gill, D., Hubbard, R., and Higgins, C., 1990, Structural model of ATP-binding associated with cystic fibrosis, multidrug resistance and bacterial transport, Nature 346:362–365.PubMedCrossRefGoogle Scholar
  34. Jardetzky, T., Lan, W., Robinson, R., Madden, D., and Wiley, D., 1991, Identification of selfpeptides bound to purified HLA-B27, Nature 353:326–329.PubMedCrossRefGoogle Scholar
  35. Karre, K., Ljunggren, H. G., Ointek, G., and Kiessling, R., 1986, Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy, Nature 319:675.PubMedCrossRefGoogle Scholar
  36. Kelly, A., Powis, S., Glynne, R., Radley, E., Beck, S., and Trowsdale, J., 1991, Second proteasome-related gene in the human MHC class II region, Nature 353:667–668.PubMedCrossRefGoogle Scholar
  37. Kelly, A., Powis, S., Kerr, L., Mockridge, I., Elliott, T., Bastin, J., Uchanska-Ziegler, B., Ziegler, A., Trowsdale, J., and Townsend, A., 1992, Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex, Nature 355:641–644.PubMedCrossRefGoogle Scholar
  38. Kleijmeer, M., Kelly, A., Geuze, H., Slot, J., Townsend, A., and Trowsdale, J., 1992, MHC-encoded transporters are located in the ER and cis-Golgi, Nature 357:342–344.PubMedCrossRefGoogle Scholar
  39. Klein, J., 1986, Natural History of the Major Histocompatibility Complex, Wiley, New York.Google Scholar
  40. Levy, F., Gabathuler, R., Larsoon, R., and Kvist, S., 1991, ATP is required for in vitro assembly of MHC class I antigens but not for transfer of peptides across the ER membrane, Cell 67:265–274.PubMedCrossRefGoogle Scholar
  41. Lippincott-Schwartz, J., Yuan, L., Bonifacino, J., and Klausner, R., 1989, Rapid redistribution of Golgi proteins in the ER in cell treated with brefeldin A: Evidence for membrane cycling from Golgi to ER, Cell 56:801–813.PubMedCrossRefGoogle Scholar
  42. Lippincott-Schwartz, J., Donaldson, J., Schweizer, A., Berger, E., Hauri, H., Yuan, L., and Klausner, R., 1990, Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests a ER recycling pathway, Cell 60:821–836.PubMedCrossRefGoogle Scholar
  43. Lippincott-Schwartz, J., Yuan, L., Tipper, C., Amherdt, M., Orci, L., and Klausner, R., 1991, Brefeldin A effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic, Cell 67:601–616.PubMedCrossRefGoogle Scholar
  44. Livingstone, A., Powis, S., Diamond, A., Butcher, G., and Howard, J., 1989, A trans acting major histocompatibility complex-linked gene whose alleles determine gain and loss changes in the antigenic structure of a classical class I molecule, J. Exp. Med. 170:777–795.PubMedCrossRefGoogle Scholar
  45. Ljunggren, H., Paabo, S., Cochet, M., Kling, G., Kourilsky, P., and Karre, K., 1989, Molecular analysis of H-2 deficit lymphoma lines. Distinct defects in biosynthesis and dissociation of MHC class I heavy chains and β-2m observed in cells with increased sensitivity to NK cell lysis, J. Immunol. 142:2911–2915.PubMedGoogle Scholar
  46. Madden, D., Gorga, J., Strominger, J., and Wiley, D., 1991, The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation, Nature 353:321–325.PubMedCrossRefGoogle Scholar
  47. Martinez, C., and Monaco, J., 1991, Homology of the proteasome subunits to a major histocompatibility complex-linked LMP gene, Nature 353:664–667.PubMedCrossRefGoogle Scholar
  48. Monaco, J., and McDevitt, H., 1984, H-2-linked low-molecular weight Polypeptide antigens assemble into an unusual macromolecular complex, Nature 309:797–799.PubMedCrossRefGoogle Scholar
  49. Monaco, J., Cho, J., and Attaya, M., 1990, Transport protein genes in the murine MHC: Possible implications for antigen processing, Science 250:1723–1726.PubMedCrossRefGoogle Scholar
  50. Moore, M., Carbone, F., and Bevan, M., 1988, Introduction of soluble protein into the class I pathway of antigen presentation, Cell 54:777–785.PubMedCrossRefGoogle Scholar
  51. Morrison, L., Lukacker, A., Braciale, V., Fan, D., and Braciale, T., 1986, Differences in antigen presentation to MHC class I and class II restricted influenza virus-specific cytotoxic T lymphocyte clones, J. Exp. Med. 163:903–910.PubMedCrossRefGoogle Scholar
  52. Neefjes, J., Stollofz, V., Peters, P., Geuze, H., and Ploegh, H., 1990, The biosynthetic pathway of MHC class II but not class I molecules intersects the endocytic route, Cell 61:171–183.PubMedCrossRefGoogle Scholar
  53. Nutchern, J., Bonifacino, J., Biddison, W., and Klausner, R., 1989, Brefeldin A implicates egress from endoplasmic reticulum in class I restricted antigen presentation, Nature 339:223–226.CrossRefGoogle Scholar
  54. Ohlen, C., Bastin, J., Ljunggren, H.-G., Imreh, S., Klein, G., Townsend, A., and Karre, K., 1990, Restoration of H-2b expression and processing of endogenous antigens in the MHC class I pathway by fusion of a lymphoma mutant to L cells of the H-2k haplotype, Eur. J. Immunol. 20:1873–1876.PubMedCrossRefGoogle Scholar
  55. Ortiz-Navarrete, V., Seeling, A., Gernold, M., Frentzel, S., Kloetzel, P., and Hammerling, G., 1991, Subunits of the “20S” proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex, Nature 353:662–664.PubMedCrossRefGoogle Scholar
  56. Owen, M., Kissonerghis, A., and Lodish, H., 1980, Biosynthesis of HLA-A and HLA-B antigens in vivo, J. Biol. Chem. 255:9678–9684.PubMedGoogle Scholar
  57. Parnes, J., and Seidman, J., 1982, Structure of wild-type and mutant mouse β-2 microglobulin genes, Cell 29:661–669.PubMedCrossRefGoogle Scholar
  58. Pelham, H. R. B., 1989, Control of protein exit from the endoplasmic reticulum, Annu. Rev. Cell Biol. 5:1–23.PubMedCrossRefGoogle Scholar
  59. Pelham, H. R. B., 1991, Recycling of proteins between the endoplasmic reticulum and Golgi complex, Curr. Biol. 3:585–591.Google Scholar
  60. Ploegh, H., Cannon, E., and Strominger, J., 1979, Cell-free translation of the mRNAs for the heavy and light chains of HLA-A and HLA-B antigens, Proc. Natl. Acad. Sci. USA 76:2273–2277.PubMedCrossRefGoogle Scholar
  61. Powis, S., Howard, J., and Butcher, G., 1991a, The major histocompatibility complex class II linked cim locus controls the kinetics of intracellular transport of a classical class I molecule, J. Exp. Med. 173:913–921.PubMedCrossRefGoogle Scholar
  62. Powis, S., Townsend, A., Deverson, E., Bastin, J., Butcher, G., and Howard, J., 1991b, Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter, Nature 354:356.CrossRefGoogle Scholar
  63. Powis, S., Deverson, E., Coadwell, J., Ciruela, A., Huskisson, N., Smith, H., Butcher, G., and Howard, J., 1992a, Effect of polymorphism of an MHC-linked transporter on the peptides assembled in a class I molecule, Nature 357:211–215.PubMedCrossRefGoogle Scholar
  64. Powis, S., Mockridge, I., Kelly, A., Kerr, L., Glynne, R., Gileadi, U., Beck, S., and Trowsdale, J., 1992b, Polymorphism in a second ABC transporter gene located within the class II region of the human MHC, Proc. Natl. Acad. Sci. USA 89:1463–1467.PubMedCrossRefGoogle Scholar
  65. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J. L., Drumm, M., Iannuzzi, M., Collins, F. S., and Tsui, L. C., 1989, Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA, Science 245:1066–1073.PubMedCrossRefGoogle Scholar
  66. Rivett, J., 1989, The multicatalytic proteinase, J. Biol. Chem. 264:12215–12219.PubMedGoogle Scholar
  67. Rötzschke, O., Falk, K., Wallny, H., Faath, S., and Rammensee, H.-G., 1990a, Characterization of naturally occurring minor histocompatibility peptides including H-4 and H-Y, Science 249:283–287.PubMedCrossRefGoogle Scholar
  68. Rötzschke, O., Falk, K., Deres, K., Schild, H., Norda, M., Metzger, J., Jung, G., and Rammensee, H.-G., 1990b, Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells, Nature 348:252–254.PubMedCrossRefGoogle Scholar
  69. Sadegh-Nasseri, S., and Germain, R., 1991, A role for peptide in determining MHC class II structure, Nature 353:167–169.PubMedCrossRefGoogle Scholar
  70. Saper, M., Bjorkman, P., and Wiley, D., 1991, Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 Å resolution, J. Mol. Biol. 219:277–319.PubMedCrossRefGoogle Scholar
  71. Salter, R., and Cresswell, P., 1986, Impaired assembly and transport of HLA-A and-B antigens in a mutant T x B cell hybrid, EMBO J. 5:943–949.PubMedGoogle Scholar
  72. Spies, T., and DeMars, R., 1991, Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter, Nature 351:323–324.PubMedCrossRefGoogle Scholar
  73. Spies, T., Bresnahan, M., Bahram, S., Arnold, D., Blank, G., Mellins, E., Pious, D., and DeMars, R., 1990, A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway, Nature 348:744–747.PubMedCrossRefGoogle Scholar
  74. Spies, T., Cerundolo, V., Colonna, M., Cresswell, P., Townsend, A., and DeMars, R., 1992, Presentation of viral antigen by MHC class I molecules is dependent on a putative peptide transporter heterodimer, Nature 355:644–646.PubMedCrossRefGoogle Scholar
  75. Stearz, U., Karasuyama, H., and Garner, A., 1988, Cytotoxic T lymphocytes against a soluble protein, Nature 329:449–450.CrossRefGoogle Scholar
  76. Tevethia, S., Flyer, D., and Tjian, R., 1980, Biology of simian virus 40 (SV40) transplantation antigen (TrAg). VI. Mechanism of induction of SV40 transplantation immunity in mice by purified SV40 T antigen (D2 protein), Virology 107:13–18.PubMedCrossRefGoogle Scholar
  77. Townsend, A., 1992, A new presentation pathway? Nature 356:386–387.PubMedCrossRefGoogle Scholar
  78. Townsend, A., and Skehel, J., 1982, Influenza A specific cytotoxic T-cell clones that do not recognize viral glycoproteins, Nature 300:655–657.PubMedCrossRefGoogle Scholar
  79. Townsend, A., Gotch, F., and Davey, J., 1985, Cytotoxic T cells recognize fragments of influenza nucleoprotein, Cell 42:457–467.PubMedCrossRefGoogle Scholar
  80. Townsend, A., Rothbard, J., Gotch, F., Bahadur, G., Wraith, D., and McMichael, A., 1986a, The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides, Cell 44:959–968.PubMedCrossRefGoogle Scholar
  81. Townsend, A., Bastin, J., Gould, K., and Brownlee, G., 1986b, Cytotoxic T lymphocytes recognize influenza hemagglutinin that lacks a signal sequence, Nature 234:575–577.CrossRefGoogle Scholar
  82. Townsend, A., Bastin, J., Gould, K., Brownlee, G., Andrew, M., Coupar, D., Boyle, D., Chan, S., and Smith, G., 1988, Defective presentation to class I restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen, J. Exp. Med. 168:1211–1218.PubMedCrossRefGoogle Scholar
  83. Townsend, A., Ohlen, C., Bastin, J., Ljunggren, H., Foster, L., and Karre, K., 1989a, Association of class I major histocompatibility heavy and light chains induced by viral peptides, Nature 340:443–448.PubMedCrossRefGoogle Scholar
  84. Townsend, A., Ohlen, C., Foster, L., Bastin, J., Ljunggren, H. G., and Karre, K., 1989b, A mutant cell in which association of class I heavy and light chains is induced by viral peptides, Cold Spring Harbor Symp. Quant. Biol. 54:299–308.PubMedCrossRefGoogle Scholar
  85. Townsend, A., Elliott, T., Cerundolo, V., Foster, L., Barber, B., and Tse, A., 1990, Assembly of MHC class I molecules analyzed in vitro, Cell 62:195–295.CrossRefGoogle Scholar
  86. Trowsdale, J., Hanson, I., Mockridge, I., Beck, S., Townsend, A., and Kelly, A., 1990, Sequences encoded in the class II region of the MHC related to the “ABC” superfamily of transporters, Nature 348:741–744.PubMedCrossRefGoogle Scholar
  87. Van Bleek, G., and Nathenson, S., 1990, Isolation of an endogenously processed immunodominant viral peptide from the class I H-2 Kb molecule, Nature 348:213–216.PubMedCrossRefGoogle Scholar
  88. Vitiello, A., Potter, T., and Sherman, L., 1990, The role of β-2-microglobulin in peptide binding by class I molecules, Science 250:1423–1425.PubMedCrossRefGoogle Scholar
  89. Wallny, H., and Rammensee, H. G., 1990, Identification of classical minor histocompatibility antigen as cell-derived peptide, Nature 343:275–278.PubMedCrossRefGoogle Scholar
  90. Wei, M., and Cress well, P., 1992, HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides, Nature 356:441–442.CrossRefGoogle Scholar
  91. Wraith, D., and Vessey, A., 1986, Influenza virus-specific cytotoxic T-cell recognition: Stimulation of nucleoprotein-specific clones with intact antigen, Immunology 59:173–177.PubMedGoogle Scholar
  92. Yang, Y., Früh, K., Chambers, J., Waters, J., Wu, L., Spies, T., and Peterson, P., 1992, Major histocompatibility complex (MHC)-encoded HAM2 is necessary for antigenic peptide loading onto class I MHC molecules, J. Biol. Chem. 267:11669–11672.PubMedGoogle Scholar
  93. Yewdell, J., and Bennick, J., 1989, Brefeldin A specifically inhibits presentation of protein antigens to cytotoxic T lymphocytes, Science 244:1072–1075.PubMedCrossRefGoogle Scholar
  94. Yewdell, J., Bennick, J., and Hosaka, Y, 1988, Cells process exogenous proteins for recognition by cytotoxic T lymphocytes, Science 239:637.PubMedCrossRefGoogle Scholar
  95. Yide, J., Wai-Kuo, S., and Berkower, I., 1988, Human T cell response to the surface antigen of hepatitis B (HBsAg). Endosomal and nonendosomal processing pathways are accessible to both endogenous and exogenous antigen, J. Exp. Med. 168:293–297.CrossRefGoogle Scholar
  96. Zinkernagel, R., and Doherty, P., 1974, Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis, Nature 251:547–549.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Vincenzo Cerundolo
    • 1
  1. 1.Institute of Molecular MedicineJohn Radcliffe HospitalHeadington, OxfordUK

Personalised recommendations