Mechanisms of Translocation of Proteins across Membranes

  • Sanford M. Simon
  • Günter Blobel
Part of the Subcellular Biochemistry book series (SCBI, volume 21)

Abstract

The movement of proteins from their site of synthesis in the cytosol to their final destination is fundamental for organelle and membrane biogenesis, secretion, and cellular organization. During the past 20 years, many advances have been made in our understanding of protein topogenesis—the process by which a protein achieves its topological distribution within a cell and, for an integral membrane protein, how it achieves its particular transmembrane topography (Blobel, 1980).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman, M. R., Sabatini, D. D., and Blobel, G., 1973, Ribosome—membrane interaction. Nondestructive disassembly of rat liver rough microsomes into ribosomal and membranous components, J. Cell Biol. 56:206–229.PubMedCrossRefGoogle Scholar
  2. Alloing, G., Trombe, M. C., and Claverys, J. P., 1990, The ami locus of the gram-positive bacterium Streptococcus pneumoniae is similar to binding protein-dependent transport operons of gram-negative bacteria, Mol. Microbiol. 4:633–644.PubMedCrossRefGoogle Scholar
  3. Blobel, G., 1980, Intracellular protein topogenesis, Proc. Natl. Acad. Sci. USA 77:1496–1500.PubMedCrossRefGoogle Scholar
  4. Blobel, G., and Dobberstein, B., 1975, Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 67:852–862.PubMedCrossRefGoogle Scholar
  5. Blobel, G., and Sabatini, D. D., 1971, Ribosome-membrane interaction in eukaryotic cells, in: Biomembranes 2 (L. A. Manson, ed.), pp. 193–195, Plenum Press, New York.CrossRefGoogle Scholar
  6. Boulanger, P., and Letellier, L., 1988, Characterization of ion channels involved in the penetration of phage T4 DNA into Escherichia coli cells, J. Biol. Chem. 263:9767–9775.PubMedGoogle Scholar
  7. Boulanger, P., and Letellier, L., 1992, Ion channels are likely to be involved in the two steps of phage T5 DNA penetration into Escherichia coli cells, J. Biol. Chem. 267:3168–3172.PubMedGoogle Scholar
  8. Chang, C. N., Blobel, G., and Model, P., 1978, Detection of prokaryotic signal peptidase in an Escherichia coli membrane fraction: Endoproteolytic cleavage of nascent fl pre-coat protein, Proc. Natl., Acad. Sci. USA 75:361–365.CrossRefGoogle Scholar
  9. Connolly, T., and Gilmore, R., 1989, The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent Polypeptide, Cell 57:599–610.PubMedCrossRefGoogle Scholar
  10. Davidson, A. L., Shuman, H. A., and Nikaido, H., 1992, Mechanism of maltose transport in Escherichia coli: Transmembrane signaling by periplasmic binding proteins, Proc. Natl. Acad. Sci. USA 89:2360–2364.PubMedCrossRefGoogle Scholar
  11. Dobberstein, B., Blobel, G., and Chua, N. H., 1977, In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-l,5-bisphosphate carboxylase of Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA 74:1082–1085.PubMedCrossRefGoogle Scholar
  12. Emr, S. D., and Silhavy, T. J., 1983, Importance of secondary structure in the signal sequence for protein secretion, Proc. Natl. Acad. Sci. USA 80:4599–4603.PubMedCrossRefGoogle Scholar
  13. Engelman, D. M., and Steitz, T. A., 1981, The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis, Cell 23:411–422.PubMedCrossRefGoogle Scholar
  14. Gilmore, R., Blobel, G., and Walter, P., 1982, Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle, J. Cell Biol. 95:463–469.PubMedCrossRefGoogle Scholar
  15. Gould, S. J., Keller, G.-A., and Subramani, S., 1988, Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins, J. Cell Biol. 107:897–905.PubMedCrossRefGoogle Scholar
  16. Hann, B. C., and Walter, P., 1991, The signal recognition particle in S. cerevisiae, Cell 67:131–144.PubMedCrossRefGoogle Scholar
  17. Jiang, L. W., and Schindler, M., 1986, Chemical factors that influence nucleocytoplasmic transport: A fluorescence photobleaching study, J. Cell Biol. 102:853–858.PubMedCrossRefGoogle Scholar
  18. Kalderon, D., Roberts, B. L., Richardson, W. D., and Smith, A. E., 1984, A short amino acid sequence able to specify nuclear localization, Cell 39:499–509.PubMedCrossRefGoogle Scholar
  19. Kang, C. H., Shin, W. C., Yamagata, Y., Gokcen, S., Ames, G. F., and Kim, S. H., 1991, Crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium at 2.7-A resolution, J. Biol. Chem. 266:23893–23899.PubMedGoogle Scholar
  20. Kerppola, R. E., and Ames, G. F., 1992, Topology of the hydrophobic membrane-bound components of the histidine periplasmic permease. Comparison with other members of the family, J. Biol. Chem. 267:2329–2336.PubMedGoogle Scholar
  21. Lingappa, V. R., Katz, F. N., Lodish, H. F., and Blobel, G., 1978, A signal sequence for the insertion of a transmembrane glycoprotein. Similarities to the signals of secretory proteins in primary structure and function, J. Biol. Chem. 253:8667–8670.PubMedGoogle Scholar
  22. Lubben, T. H., Bansberg, J., and Keegstra, K., 1987, Stop-transfer regions do not halt translocation of proteins into chloroplasts, Science 238:1112–1114.PubMedCrossRefGoogle Scholar
  23. Maccecchini, M. L., Rudin, Y, Blobel, G., and Schatz, G., 1979, Import of proteins into mitochondria: Precursor forms of the extramitochondrially made Fl-ATPase subunits in yeast, Proc. Natl. Acad. Sci. USA 76:343–347.PubMedCrossRefGoogle Scholar
  24. Miller, C., 1986, Ion Channel Reconstitution, Plenum Press, New York.Google Scholar
  25. Morrison, D. A., Trombe, M. C., Hayden, M. K., Waszak, G. A., and Chen, J. D., 1984, Isolationof transformation-deficient Streptococcus pneumoniae mutants defective in control of competence, using insertion-duplication mutagenesis with the erythromycin resistance determinant of pAM beta 1, J. Bacteriol. 159:870–876.PubMedGoogle Scholar
  26. Mueller, P., and Rudin, D. O., 1969, Bimolecular lipid membranes: Techniques of formation, study of electrical properties, and induction of ionic gating phenomena, in: Laboratory Techniques in Membrane Biophysics (H. Passow and R. Stampfil, eds.), pp. 141–156, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  27. Mueller, P., Rudin, D. O., Ti Tien, H., and Wescott, W. C., 1962, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature 194:979–980.PubMedCrossRefGoogle Scholar
  28. Nguyen, M., and Shore, G. C., 1987, Import of hybrid vesicular stomatitis G protein to the mitochondrial inner membrane, J. Biol. Chem. 262:3929–3931.PubMedGoogle Scholar
  29. Paine, P. L., Moore, L. C., and Horowitz, S. B., 1975, Nuclear envelope permeability, Nature 254:109–114.PubMedCrossRefGoogle Scholar
  30. Redman, C. M., and Sabatini, D. D., 1966, Vectorial discharge of peptides released by puromycin from attached ribosomes, Proc. Natl. Acad. Sci. USA 56:608–615.PubMedCrossRefGoogle Scholar
  31. Redman, C. M., Siekevitz, P., and Palade, G. E., 1966, Synthesis and transfer of amylase in pigeon pancreatic microsomes, J. Biol. Chem. 241:1150–1158.PubMedGoogle Scholar
  32. Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T., and Britten, R. J., 1963, Studies of Biosynthesis in Escherichia coli, Carnegie Institution of Washington, Washington, D.C.Google Scholar
  33. Simon, S. M., and Blobel, G., 1991, A protein-conducting channel in the endoplasmic reticulum, Cell 65:1–10.CrossRefGoogle Scholar
  34. Simon, S. M., and Blobel, G., 1992, Signal peptides open protein-conducting channels in E. coli, Cell 69:677–684.PubMedCrossRefGoogle Scholar
  35. Simon, S. M., Blobel, G., and Zimmerberg, J., 1989, Large aqueous channels in membrane vesicles derived from the rough endoplasmic reticulum of canine pancreas or the plasma membrane of Escherichia coli, Proc. Natl. Acad. Sci. USA 86:6176–6180.PubMedCrossRefGoogle Scholar
  36. Simon, S. M., Peskin, C. S., and Oster, G. F., 1992, What drives the translocation of proteins, Proc. Natl. Acad. Sci. USA 89:3770–3774.PubMedCrossRefGoogle Scholar
  37. Singer, S. J., Maher, P. A., and Yaffe, M. P., 1987, On the translocation of proteins across membranes, Proc. Natl. Acad. Sci. USA 84:1015–1019.PubMedCrossRefGoogle Scholar
  38. Swinkels, B. W., Gould, S. J., Bodnar, A. G., Rachubinski, R. A., and Subramani, S., 1991, A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase, EMBO J. 10:3255–3262.PubMedGoogle Scholar
  39. Traut, R. R., and Monro, R. E., 1964, The puromycin reaction and its relation to protein synthesis, J. Mol. Biol. 10:63–72.PubMedCrossRefGoogle Scholar
  40. Trombe, M. C., Laneelle, G., and Sicard, A. M., 1984, Characterization of a Streptococcus pneumoniae mutant with altered electric transmembrane potential, J. Bacteriol. 158:1109–1114.PubMedGoogle Scholar
  41. Vestweber, D., and Schatz, G., 1989, DNA-protein conjugates can enter mitochondria via the protein import pathway, Nature 338:170–172.PubMedCrossRefGoogle Scholar
  42. Von Heijne, G., and Blomberg, C., 1979, Transmembrane translocation of protein, Eur. J. Biochem. 97:175–181.CrossRefGoogle Scholar
  43. Walter, P., and Blobel, G., 1981, Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes, J. Cell Biol. 91:557–561.PubMedCrossRefGoogle Scholar
  44. Walter, P., Ibrahimi, I., and Blobel, G., 1981, Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein, J. Cell Biol. 91:545–550.PubMedCrossRefGoogle Scholar
  45. Walter, P., Gilmore, R., and Blobel, G., 1984, Protein translocation across the endoplasmic reticulum, Cell 38:5–8.PubMedCrossRefGoogle Scholar
  46. Zimmerberg, J., Cohen, F. S., and Finkelstein, A., 1980, Micromolar Ca2+ stimulates fusion of lipid vesicles with planar bilayers containing a calcium-binding protein, Science 210:906–908.PubMedCrossRefGoogle Scholar
  47. Zimmermann, R., Zimmermann, M., Wiech, H., Schlenstedt, G., Müller, G., Morel, F., Klappa, P., Jung, C., and Cobet, W. W. E., 1990, Ribonucleoparticle-independent transport of proteins into mammalian microsomes, J. Bioenerg. Biomembr. 22:711–723.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Sanford M. Simon
    • 1
  • Günter Blobel
    • 2
  1. 1.Laboratory of Cellular BiophysicsRockefeller UniversityNew YorkUSA
  2. 2.Laboratory of Cell BiologyRockefeller UniversityNew YorkUSA

Personalised recommendations