Early Diagenesis of Organic Matter in Sediments

Assessment of Mechanisms and Preservation by the Use of Isotopic Molecular Approaches
  • Stephen A. Macko
  • Michael H. Engel
  • Patrick L. Parker
Part of the Topics in Geobiology book series (TGBI, volume 11)


Substantial information regarding the history and source of organic matter and transfer of both carbon nitrogen to and within marine environments lies in the chemical and isotopic signals of organic materials. Origins and diagenetic histories of organic materials can be assessed on a bulk basis, using molar ratios of carbon to nitrogen and stable isotope compositions, or on a molecular level, using characteristic molecules or compositional changes to indicate the major processes occurring in the sedimentary deposit. More recently, clear identification of the preservation of particular components has been achieved, and the processes involved with the formation of an organic deposit have been established through the isotopic characterization of the compounds themselves. This chapter endeavors to lay a foundation for such molecular isotopic approaches in studies of the early diagenesis of sedimentary organic material. Specific details on molecular carbon approaches, especially those having to do with lipid characterization, are discussed in other chapters of this book [see chapters by Brassell (Chapter 34), Hedges and Prahl (Chapter 11), and Meyers and Ishiwatari (Chapter 8)] or larger compilations related to the field of marine organic geochemistry (Eglinton and Murphy, 1969; Duursma and Dawson, 1981; Brooks and Welte, 1984; Tissot and Welte, 1984; Sigleo and Hattori, 1985; Sohn, 1986).


Stable Isotope Humic Substance Carbon Isotope Nitrogen Isotope Organic Geochemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, P. H., and Hare, P. E., 1971, Reactions of amino acids with natural and artificial humus and kerogens, Carnegie Inst. Washington Yearb. 69:327–334.Google Scholar
  2. Abelson, P. H., and Hoering, T. C., 1961, Carbon isotope fractionation in formation of amino acids by photosynthetic organisms, Proc. Natl Acad. Sci. U.S.A. 47:623–632.CrossRefGoogle Scholar
  3. Abrajano, T. A., Fang, J., Comet, P. A., and Brooks, J., 1992, Compound-specific carbon analysis of fatty acids, 203rd National Meeting of the American Chemical Society, San Francisco, Abstract #104.Google Scholar
  4. Aizenshtat, Z., Rubinsztain, Y., Ioselis, P., Miloslavski, I., and Ikan, R., 1987, Long-living free radicals study of stepwise pyrolyzed melanoidins and humic substances, Org. Geochem. 11:65–71.CrossRefGoogle Scholar
  5. Akiyama, M., and Johns, W. D., 1972, Amino acids in the Cretaceous Pierre Shale of eastern Wyoming, Pac. Geol 4:79–89.Google Scholar
  6. Altabet, M. A., 1988, Variations in nitrogen isotopic composition between sinking and suspended particles: Implications for nitrogen cycling and particle transformation in the open ocean, Deep-Sea Res. 35:535–554.CrossRefGoogle Scholar
  7. Altabet, M. A., and McCarthy, J. J., 1985, Temporal and spatial variations in the natural abundance of 15N in PON from a warm core ring, Deep-Sea Res. 7:755–772.CrossRefGoogle Scholar
  8. Altabet, M. A., and McCarthy, J. J., 1986, Vertical patterns in 15N natural abundance in PON from the surface waters of warm-core rings, J. Mar. Res. 44:185–201.CrossRefGoogle Scholar
  9. Arthur, M. A., Dean, W. E., and Claypool, G. E., 1985, Anomalous 13C enrichment in modern marine organic carbon, Nature 315:216–218.CrossRefGoogle Scholar
  10. Bada, J. L., and Mann, E. H., 1980, Amino acid diagenesis in DSDP cores: Kinetics and mechanisms of some reactions and their applications in geochronology and in paleotemperature and heat flow determinations, Earth Sci. Rev. 16:21–57.CrossRefGoogle Scholar
  11. Bada, J. L., Schoeninger, M. J., and Shimmelmann, A., 1989, Isotopic fractionation during peptide bond hydrolysis, Geochim. Cosmochim. Acta 53:3337–3341.CrossRefGoogle Scholar
  12. Behrens, E. W., and Frishman, S. A., 1971, Stable carbon isotopes in blue-green algal mats, J. Geol. 79:95–100.CrossRefGoogle Scholar
  13. Bidigare, R. R., Kennicutt, M. C., Keeney-Kennicutt, W. L., and Macko, S. A., 1991, Isolation and purification of chlorophylls a and b for the determination of stable carbon and nitrogen isotope compositions, Anal. Chem. 63:130–133.CrossRefGoogle Scholar
  14. Biggs, D. C., Berkowitz, S. P., Altabet, M. A., Bidigare, R. R., DeMaster, D. J., Dunbar, R. B., Leventer, A., Macko, S. A., Nittrouer, C. A., and Ondrusek, M. E., 1988, A cooperative study of upper ocean particulate fluxes in the Weddell Sea, in: Initial Reports of the Ocean Drilling Program Leg 113, Part A (P. F. Barker, J. P. Kennett, et al., eds.), College Station, TX pp. 77–85.Google Scholar
  15. Biggs, D. C., Berkowitz, S. P., Altabet, M. A., Bidigare, R. R., DeMaster, D. J., Macko, S. A., Ondrusek, M. E., and Noh, I., 1989, A cooperative study of upper ocean particulate fluxes, in: Initial Reports of the Ocean Drilling Program Leg 119, Part A (B. Larren, and J. Barron, et al., eds.), College Station, TX, pp. 109–119.Google Scholar
  16. Bjorøy, M., Hall, K., Gillyon, P., and Jumeau, J., 1991, Carbon isotope variations in n-alkanes and isoprenoids of whole oils, Chem. Geol. 93:13–20.CrossRefGoogle Scholar
  17. Bordovskiy, O. K., 1965, Accumulation and transformation of organic substances in marine sediments, Mar. Geol. 3:3–114.CrossRefGoogle Scholar
  18. Boreham, C. J., Fookes, C. J. R., Popp, B. N., and Hayes, J. M., 1989, Origins of etioporphyrins in sediments: Evidence from stable carbon isotopes, Geochim. Cosmochim. Acta 53:2451–2455.CrossRefGoogle Scholar
  19. Brooks, J., and Welte, D. (eds.), 1984, Advances in Petroleum Geochemistry, Academic Press, New York.Google Scholar
  20. Burdige, D. J., and Martens, C. S., 1988, Biogeochemical cycling in an organic-rich coastal marine basin: 10. The role of amino acids in sedimentary carbon cycling and nitrogen cycling, Geochim. Cosmochim. Acta 52:1571–1584.CrossRefGoogle Scholar
  21. Cai, D. L., Tan, F. C., and Edmond, J. M., 1988, Sources and transport of particulate organic carbon in the Amazon River and Estuary, Estuarine Coastal Shelf Sci. 26:1–14.CrossRefGoogle Scholar
  22. Carter, P. W., and Mitterer, R. M., 1978, Amino acid composition of organic matter associated with carbonate and non-carbonate sediments, Geochim. Cosmochim. Acta 38:341–364.Google Scholar
  23. Casagrande, D. J., and Given, P. H., 1980, Geochemistry of amino acids in some Florida peat accumulations—II. Amino acid distributions, Geochim. Cosmochim. Acta 44:1493–1507.CrossRefGoogle Scholar
  24. Dean, W. E., Arthur, M. A., and Claypool, G. E., 1986, Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic, or environmental signal? Mar. Geol. 70:119–157.CrossRefGoogle Scholar
  25. Degens, E. T., 1969, Biogeochemistry of stable carbon isotopes, in: Organic Geochemistry, (G. Eglinton and M. T. J. Murphy, eds.), Springer-Verlag, New York, pp. 304–329.Google Scholar
  26. Degens, E. T., 1970, Molecular nature of nitrogenous compounds in seawater and recent sediments, in: Organic Matter in Natural Waters (D. W. Wood, ed.), Marine Sciences Institute, University of Alaska, pp. 77–106.Google Scholar
  27. Degens, E. T., and Mopper, K., 1976, Factors controlling the distribution and early diagenesis of organic material in marine sediment, in: Chemical Oceanography (J. P. Riley and R. Chester, eds.), Academic Press, New York, pp. 60–112.Google Scholar
  28. Degens, E. T., Behrend, M., Gottharl, B., and Reppmann, E., 1968a, Metabolic fractionation of carbon isotopes in marine plankton—II. Data on samples collected off the coasts of Peru and Ecuador, Deep-Sea Res. 15:11–20.Google Scholar
  29. Degens, E. T., Gaillard, R. R. L., Sackett, W. M., and Hellebust, J. A., 1968b, Metabolie fractionation of carbon isotopes in marine plankton—I. Temperature and respiration experiments, Deep-Sea Res. 15:1–9.Google Scholar
  30. Des Marais, D. J., Mitchell, J. M., Meinschein, W. G., and Hayes, J. M., 1980, The carbon isotopic biogeochemistry of individual hydrocarbons in bat guano and the ecology of insectivorous bats in the region of Carlsbad, New Mexico, Geochim. Cosmochim. Acta 44:2075–2086.CrossRefGoogle Scholar
  31. Des Marais, D. J., Donchin, J. H., Nehring, N. L., and Truesdell, A. H., 1981, Molecular carbon evidence for the origin of geothermal hydrocarbons, Nature 292:826–828.CrossRefGoogle Scholar
  32. Dungworth, G., Thijssen, M., Zuusveld, J., Van der Velden, W., and Schwartz, A. W., 1977, Distribution of amino acids, amino sugars, purines and pyrimidines in a Lake Ontario sediment core, Chem. Geol. 19:295–308.CrossRefGoogle Scholar
  33. Duursma, E. K., and Dawson, R. (eds.), 1981, Marine Organic Chemistry, Elsevier, Amsterdam.Google Scholar
  34. Eckelmann, W. R., Broecker, W. S., Whitlock, D. W., and Allsup, J. R., 1962, Implications of carbon isotopic composition of total organic carbon of some recent sediments and ancient oils, Am. Assoc. Petrol. Geol. Bull. 46:699–704.Google Scholar
  35. Eglinton, G., and Murphy, M. T. J. (eds.), 1969, Organic Geochemistry, Springer-Verlag, New York.Google Scholar
  36. Engel, M. H., and Macko, S. A., 1984, Separation of amino acid enantiomers for stable nitrogen and carbon isotopic analyses, Anal. Chem. 56:2598–2600.CrossRefGoogle Scholar
  37. Engel, M. H., and Macko, S. A., 1986, Stable isotope evaluation of the origins of amino acids in fossils, Nature 323:531–533.CrossRefGoogle Scholar
  38. Engel, M. H., Rafalska-Bloch, J., Schiefelbein, C. F., Zumberge, J. E., and Serban, A., 1986, Simulated diagenesis and catagenesis of marine kerogen precursors: melanoidins as model systems for light hydrocarbon generation, in: Advances in Organic Geochemistry 1985 (D. Leythaeuser and J. Rullkötter, eds.), Org. Geochem. 10:1073–1079.CrossRefGoogle Scholar
  39. Engel, M. H., Macko, S. A., and Silfer, J. A., 1990, Carbon isotope composition of individual amino acids in the Murchison meteorite, Nature 348:47–49.CrossRefGoogle Scholar
  40. Ertel, J. R., and Hedges, J. I., 1983, Bulk chemical and spectroscopic properties of marine and terrestrial humic acids, melanoidins and catechol-based synthetic polymers, in: Aquatic and Terrestrial Humic Substances (R. F. Christman and E. T. Gjessing, eds.), Ann Arbor Science, Ann Arbor, Michigan, pp. 143–163.Google Scholar
  41. Fontugne, M. R., and Duplessy, J. C., 1978, Carbon isotope ratio of marine plankton related to surface water masses, Earth Planet. Sci. Lett. 41:365–371.CrossRefGoogle Scholar
  42. Fontugne, M. R., and Duplessy, J. C., 1981, Organic carbon isotopic fractionation by marine plankton in the temperature range-1 to 31°C, Oceanol. Acta 4:85–90.Google Scholar
  43. Franchi, I. A., Exley, R. A., Gilmour, I., and Pillinger, C. T., 1989, Stable isotope and abundance measurements of solvent extractable compounds in Murchison, Extended Abstract, 14th Symposium on Antarctic Meteorites, June 1989, National Institute for Polar Research, Tokyo.Google Scholar
  44. Freedman, P. A., Gillyon, E. C. P., and Jumeau, E. J., 1988, Design and application of a new instrument for GC-isotope ratio MS, Am. Lab. 1988(June):114–119.Google Scholar
  45. Freeman, K. H., Hayes, J. M., Trendel, J.-M., and Albrecht, P., 1990, Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons, Nature 343:254–256.CrossRefGoogle Scholar
  46. Gaebler, O. H., Choitz, H. C., Vitti, T. G., and Vukmirovich, R., 1963, Significance of 15N excess in nitrogenous compounds of biological origin, Can. J. Biochem. 41:1089–1097.CrossRefGoogle Scholar
  47. Gaebler, O. H., Vitt, T. G., and Vukmirovich, R., 1966, Isotope effects in metabolism of 14N and 15N from unlabeled dietary proteins, Can. J. Biochem. 44:1249–1257.CrossRefGoogle Scholar
  48. Galimov, E. M., 1980, C13/C12 in kerogen, in: Kerogen—Insoluble Organic Matter from Sedimentary Rocks (B. Durand, ed.), Editions Technip, Paris, pp. 271–299.Google Scholar
  49. Gearing, J. N., Gearing, P. J., Rudnick, D. T., Requejo, A. G., and Hutchings, M. J., 1984, Isotopic variability of organic carbon in a phytoplankton-based, temperate estuary, Geochim. Cosmochim. Acta 48:1089–1098.CrossRefGoogle Scholar
  50. Gearing, P., Plucker, F. E., and Parker, P. L., 1977, Land-derived organic matter in surface sediments from the Gulf of Mexico, Geochim. Cosmochim. Acta 40:1019–1029.Google Scholar
  51. Gilmour, I., Swart, P. K., and Pillinger, C. T., 1984, The isotopic composition of individual petroleum lipids, Org. Geochem. 6:665–670.CrossRefGoogle Scholar
  52. Gonzalez, J. M., 1983, Amino acid composition of sediments from a deltaic environment, Mar. Chem. 14:61–71.CrossRefGoogle Scholar
  53. Hare, P. E., 1969, Geochemistry of proteins, peptides and amino acids, in: Organic Geochemistry (G. Eglinton and M. T. J. acids, in: Organic Geochemistry (G. Eglinton and M. T. J. Murphy, eds.). Springer-Verlag, New York, pp. 438–463.Google Scholar
  54. Hare, P. E., Fogel, M. L., Stafford, T. W., Mitchell, A. D., and T. C. Hoering, 1991, The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins, J. Arch. Sci. 18:277–292.CrossRefGoogle Scholar
  55. Hayes, J. M., Takigiku, R., Ocampo, R., Callot, H. J., and Albrecht, P., 1987, Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale, Nature 329:48–51.CrossRefGoogle Scholar
  56. Hayes, J. M., Popp, B. N., Takigiku, R., and Johnson, M. W., 1989, An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation, Geochim. Cosmochim. Acta 53:2961–2972.CrossRefGoogle Scholar
  57. Hayes, J. M., Freeman, K. H., Popp, B. N., and Hoham, C. H., 1990, Compound-specific isotope analysis: A novel tool for reconstruction of ancient biogeochemical processes, Org. Geochem. 16:1115–1128.CrossRefGoogle Scholar
  58. Hedges, J. I., 1978, The formation and clay mineral reactions of melanoidins, Geochim. Cosmochim. Acta 42:69–76.CrossRefGoogle Scholar
  59. Hedges, J. I., and Parker, P. L., 1976, Land-derived organic matter in surface sediments of the Gulf of Mexico, Geochim. Cosmochim. Acta 40:1019–1029.CrossRefGoogle Scholar
  60. Henrichs, S. M., and Farrington, J. W., 1979, Amino acids in interstitial waters of marine sediments, Nature 279:319–322.CrossRefGoogle Scholar
  61. Henrichs, S. M., and Farrington, J. W., 1980, Amino acids in interstitial waters of marine sediments: A comparison of results from different sedimentary environments, in: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon Press, New York, pp. 435–443.Google Scholar
  62. Henrichs, S. M., and Farrington, J. W., 1984, Peru upwelling region sediments near 15°S. 1. Remineralization and accumulation of organic matter, Limnol. Oceanogr. 29:1–19.CrossRefGoogle Scholar
  63. Henrichs, S. M., and Farrington, J. W., 1987, Early diagenesis of amino acids and organic matter in two coastal marine sediments, Geochim. Cosmochim. Acta 51:1–15.CrossRefGoogle Scholar
  64. Henrichs, S. M., and Farrington, J. W., and Lee, C., 1984, Peru upwelling region sediments near 15°S. 2. Dissolved free and total hydrolyzable amino acids, Limnol. Oceanogr. 29:20–34.CrossRefGoogle Scholar
  65. Hoering, T. C., 1957, The isotopic composition of ammonia and the nitrate ion in rain, Geochim. Cosmochim. Acta 12:97–102.CrossRefGoogle Scholar
  66. Hoering, T. C. 1973, A comparison of melanoidin and humic acid, Carnegie Inst. Washington Yearb. 72:682–690.Google Scholar
  67. Hoering, T., and Ford, H. T., 1960, The isotope effect in the fixation of nitrogen by Azotobacter, J. Am. Chem. Soc. 82:376–378.CrossRefGoogle Scholar
  68. Ikan, R., Ioselis, P., Rubinsztain, Y., Aizenshtat, Z., Muller-Vonmoos, M., and Rub, A., 1988, Light hydrocarbons and volatile compounds produced during the thermal treatment of melanoidins and humic substances, Org. Geochem. 12:273–279.CrossRefGoogle Scholar
  69. Ishiwatari, R., Morinaga, S., Yamamoto, S., Machihara, T., Rubinsztain, Y., Ioselis, P., Aizenshtat, Z., and Ikan, R., 1986, A study of formation mechanism of sedimentary humic substances—I. Characterization of synthetic humic substances (melanoidins) by alkaline potassium permanganate oxidation, Org. Geochem. 9:11–23.CrossRefGoogle Scholar
  70. Jasper, J. P., and Gagosian, R. B., 1989, Glacial-interglacial climatically forced 13C variations in sedimentary organic matter, Nature 342:60–62.CrossRefGoogle Scholar
  71. Jasper, J. P., and Gagosian, R. B., 1990, The sources and deposition of organic matter in the Late Quaternary Pigmy Basin, Gulf of Mexico, Geochim. Cosmochim. Acta 54:1117–1132.CrossRefGoogle Scholar
  72. Kaplan, I. R., 1975, Stable isotopes as a guide to biogeochemical processes, Proc. R. Soc. London, Ser. B 189:183–211.CrossRefGoogle Scholar
  73. Kennicutt, M. C., and Brooks, J. M., 1990, Unusual normal alkane distributions in offshore New Zealand sediments, Org. Geochem. 15:193–197.CrossRefGoogle Scholar
  74. Kennicutt, M. C., Barker, C., Brooks, J. M., DeFreitas, D. A., and Zhu, G. H., 1987, Selected organic matter indicators in the Orinoco, Nile and Changjiang deltas, Org. Geochem. 11:41–51.CrossRefGoogle Scholar
  75. Kennicutt, M. C., Macko, S. A., Harvey, H. R., and Bidigare, R. R., 1991, Preservation of Sargassum under anoxic conditions: Isotopic and molecular evidence, in: Productivity Accumulation and Preservation of Organic Matter in Recent and Ancient Sediments (J. K. Whelan and J. W. Farrington, eds.) Columbia University Press, New York, pp. 123–141.Google Scholar
  76. Kennicutt, M. C., Bidigare, R. R., Macko, S. A., and Keeney-Kennicutt, W. L., 1992, The stable isotopic composition of photosynthetic pigments and related biochemicals, Isot. Geosci. 15:235–246.CrossRefGoogle Scholar
  77. Larter, S. R., and Douglas, A. G., 1980, Melanoidins—kerogen precursors and geochemical lipid sinks: A study using pyrolysis gas chromatography (PGC), Geochim. Cosmochim. Acta 44:2087–2095.CrossRefGoogle Scholar
  78. Libes, S. M., and Deuser, W. G., 1988, The isotope geochemistry of particulate nitrogen in the Peru Upwelling Area and the Gulf of Maine, Deep-Sea Res. 35:517–533.CrossRefGoogle Scholar
  79. Macko, S. A., 1981, Stable nitrogen isotope ratios as tracers of organic geochemical processes, Ph.D. Thesis, University of Texas, Austin.Google Scholar
  80. Macko, S. A., 1983, Sources of organic nitrogen in mid-Atlantic coastal bays and continential shelf sediments of the United States: Isotopic evidence, Carnegie Inst. Washington Yearb. 82:390–394.Google Scholar
  81. Macko, S. A., 1989, Stable isotope organic geochemistry of sediments from the Labrador Sea (Sites 646, 647) and Baffin Bay (Site 645) ODP Leg 105, in: Initial Reports of the ODP Leg 105, Part B (M. Arthur, S. Srivastava, et al., eds.), College Station, TX, pp. 209–232.Google Scholar
  82. Macko, S. A., 1992, The characterization of organic matter in abyssal sediments, pore waters and sediment traps, in: Deep-Sea Food Chains and the Global Carbon Cycle (G. Rowe, ed.), NATO Advanced Research Workshop, Kluwer Academic Publ., Dordrecht, pp. 325–338.CrossRefGoogle Scholar
  83. Macko, S. A., and Engel, M. H., 1991, Assessment of indigeneity in fossil organic matter: Amino acids and stable isotopes, Philos. Trans. R. Soc. London 333:367–374.CrossRefGoogle Scholar
  84. Macko, S. A., and Pereira, C. P. G., 1990, Neogene paleoclimate development of the Antarctic Weddell Sea Region: Organic geochemistry, in: Initial Reports of the Ocean Drilling Program Leg 113, College Station, TX, Part B (P. F. Barker, J. P. Kennett, et al., eds.), pp. 881–897.Google Scholar
  85. Macko, S. A., Entzeroth, L., and Parker, P. L., 1984, Regional differences in nitrogen and carbon isotopes on the continental shelf of the Gulf of Mexico, Naturwissenschaften 71:374–375.CrossRefGoogle Scholar
  86. Macko, S. A., Estep, M. F., Engel, M. H., and Hare, P. E., 1986, Kinetic fractionation of stable nitrogen isotopes during amino acid transamination, Geochim. Cosmochim. Acta 50:2143–2146.CrossRefGoogle Scholar
  87. Macko, S. A., Estep, M. L. F., Hare, P. E., and Hoering, T. C., 1987a, Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Isot. Geosci. 65:79–92.CrossRefGoogle Scholar
  88. Macko, S. A., Pulchan, K., and Ivany, D. E., 1987b, Organic Geochemistry of Baffin Island Fjords. Sedimentology of Arctic Fjords Experiment, Geological Survey of Canada Open File Report 1589-13, pp. 1–34.Google Scholar
  89. Macko, S. A., Helleur, R., Hartley, G., and Jackman, P., 1990, Diagenesis of organic matter—a study using stable isotopes of individual carbohydrates, Org. Geochem. 16:1129–1137.CrossRefGoogle Scholar
  90. Macko, S. A., Engel, M. H., Hartley, G., Hatcher, P., Helleur, R., Jackman, P., and Silfer, J., 1991, Isotopic compositions of individual carbohydrates as indicators of early diagenesis of organic matter, Chem. Geol. 93:147–161.CrossRefGoogle Scholar
  91. Macko, S. A., Leskey, T., Ryan, M., and Engel, M. H., 1992, Carbon isotopic analysis of individual carbohydrates by GC/IRMS, 203rd National Meeting of the American Chemical Society, San Francisco, Abstract No. 107.Google Scholar
  92. Maillard, L. C., 1912, Action des acides amines sur les sucres: Formation des mélanoidines par voie méthodiques, C. R. Acad. Sci. 154:66–68.Google Scholar
  93. Mariotti, A., Mariotti, F., Amarger, N., Pizelle, G., Ngambi, J.-M., Champigny, M.-L., and Moyse, A., 1980, Fractionnements isotopiques de l’azote lors des processus d’absorption des nitrates et de fixation de l’azote atmosphérique par les plantes, Physiol. Veg. 18:163–181.Google Scholar
  94. Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., and Tardieux, P., 1981, Experimental determination of nitrogen kinetic isotope fractionation: Some principles: Illustration for the denitrification and nitrification processes, Plant Soil 62:423–430.CrossRefGoogle Scholar
  95. Mariotti, A., Germon, J. C., Leclerc, A., Catroux, G., and Letolle, R., 1982, Experimental determination of kinetic isotope fractionation of nitrogen isotopes during denitrification, in: Stable Isotopes (H. L. Schmidt, et al., eds.), Elsevier, Amsterdam, pp. 459–464.Google Scholar
  96. Mayer, L. M., Macko, S. A., and Cammen, L., 1988, Provenance, concentrations and nature of sedimentary organic nitrogen in the Gulf of Maine, Mar. Chem. 25:291–304.CrossRefGoogle Scholar
  97. Montani, S., Yoshaki, M., and Fukase, S., 1980, Flux of nitrogen compounds in coastal sediments and pore water, Chem. Geol. 30:35–45.CrossRefGoogle Scholar
  98. Mopper, K., and Degens, E. T., 1972, Aspects of biogeochemistry of carbohydrates and proteins in aquatic environments, Technical Reports, Woods Hole Océanographie Institution, Ref. # 72-68. Woods Hole, Massachusetts.Google Scholar
  99. Morris, R. J., 1975, The amino acid composition of a deep water sediment from the upwelling region northwest of Africa, Geochim. Cosmochim. Acta 39:381–388.CrossRefGoogle Scholar
  100. Muller, P. J., 1977, C/N ratios in Pacific deep sea sediments: Effect of inorganic ammonium and organic nitrogen compounds adsorbed to clays, Geochim. Cosmochim Acta 41:765–776.CrossRefGoogle Scholar
  101. Muller, P. J., and Suess, E., 1979, Productivity, sedimentation rate, and sedimentary carbon content in the oceans. 1. Organic carbon preservation, Deep-Sea Res. 26A:1347–1362.CrossRefGoogle Scholar
  102. Muzuka, A. N. N., Macko, S. A., and Pedersen, T. F., 1991, Stable carbon and nitrogen isotope compositions of organic matter from ODP Sites 724 and 725, Oman Margin, in: Initial Reports of the Ocean Drilling Program Leg 117, College Station, TX, Part B (W. L. Prell, N. Niitsuma, et al., eds.), pp. 571–586.Google Scholar
  103. Myers, E. P., 1974, The concentration and isotopic composition of carbon in marine sediments affected by sewage discharge, Ph.D. Thesis, California Institute of Technology.Google Scholar
  104. Newman, J. W., Parker, P. L., and Behrens, E. W., 1973, Organic carbon isotope ratios in Quaternary cores from the Gulf of Mexico, Geochim. Cosmochim. Acta 37:225–238.CrossRefGoogle Scholar
  105. Nissenbaum, A., 1974, The organic geochemistry of marine and terrestrial humic substances: Implications of carbon and hydrogen isotope studies, in: Advances in Organic Geochemistry 1973 (B. Tissot and F. Bienner, eds.), Editions Technip, Paris, pp. 39–52.Google Scholar
  106. Nissenbaum, A., and Schallinger, K. M., 1974, The distribution of the stable carbon isotope (13C/12C) in fractions of soil organic matter, Geoderma 11:137–145.CrossRefGoogle Scholar
  107. Nissenbaum, A., Presley, B. J., and Kaplan, I. R., 1972, Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia—I. Chemical and isotopic changes in major components of interstitial water, Geochim. Cosmochim. Acta 36:1007–1027.CrossRefGoogle Scholar
  108. Ocampo, R., Callot, H. J., Albrecht, P., Popp, B. N., Horowitz, M. R., and Hayes, J. M., 1989, Different isotopic compositions of C32 etioporphyrin II in oil shale. Origin of etioporphyrin II from heme? Naturwissenschaften 76:419–421.CrossRefGoogle Scholar
  109. O’Leary, M. H., and Kluetz, M. D., 1972, Nitrogen isotope effects on the chymotrypsin-catalyzed hydrolysis of N-acetyl-L-tryptophanamide, J. Am. Chem. Soc. 94:3585–3589.CrossRefGoogle Scholar
  110. O’Leary, M. H., and Marlier, J. F., 1979, Heavy-atom isotope effects on the alkaline hydrolysis and hydrazinolysis of methyl benzoate, J. Am. Chem. Soc. 101:3300–3306.CrossRefGoogle Scholar
  111. Ostrom, N. E., and Macko, S. A., 1991a, Sources, cycling and distribution of water column particulate and sedimentary organic matter in northern Newfoundland fjords and bays: A stable isotope study, in: Productivity, Accumulation and Preservation of Organic Matter in Recent and Ancient Sediments (J. K. Whelan and J. W. Farrington, eds.), Columbia University Press, New York, pp. 55–81.Google Scholar
  112. Ostrom, N. E., and Macko, S. A., 1991b, Late Wisconsinan to present sedimentation of organic matter off northern Newfoundland in response to climatological events, Cont. Shelf Res. 11:1285–1296.CrossRefGoogle Scholar
  113. Parker, P. L., 1962, The isotopic composition of the carbon of fatty acids, Carnegie Inst. Washington Ann. Rep. 1961–1962:187–190.Google Scholar
  114. Parker, P. L., 1964, The biogeochemistry of the stable isotopes of carbon in a marine bay, Geochim. Cosmochim. Acta 28:1155–1164.CrossRefGoogle Scholar
  115. Parker, P. L., Behrens, E. W., Calder, J. A., and Shultz, D., 1972, Stable carbon isotope ratio variations in the organic carbon from Gulf of Mexico sediments, Contrib. Mar. Sci. 16:139–147.Google Scholar
  116. Patience, R. L., Clayton, C. J., Kearsley, A. T., Rowland, S. J., Bishop, A. N., Rees, A. W. G., Bibby, K. G., and Hopper, A. C., 1990, An integrated biochemical, geochemical and sedimentological study of organic diagenesis in sediments from ODP, Leg 112, in: Initial Reports of the Ocean Drilling Program Leg 112, College Station TX, Part B (E. Suess, R. von Huene, et al., eds.), pp. 135–153.Google Scholar
  117. Peters, K. E., Sweeney, R. E., and Kaplan, I. R., 1978, Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter, Limnol. Oceanogr. 23:598–604.CrossRefGoogle Scholar
  118. Popp, B. N., Takigiku, R., Hayes, J. M., Louda, J. W., and Baker, E. W., 1989, The post-paleozoic chronology and mechanism of 13C depletion in primary marine organic matter, Am. J. Sci. 289:436–454.CrossRefGoogle Scholar
  119. Qian, Y., Engel, M. H., and Macko, S. A., 1992, Stable isotope fractionation of biomonomers during protokerogen formation, Isotope Geosci. 15:201–210.CrossRefGoogle Scholar
  120. Rafalska, J. K., Engel, M. H., and Lanier, W. P., 1991, Retardation of racemization rates of amino acids incorporated into melanoidins, Geochim. Cosmochim. Acta 55:3669–3676.CrossRefGoogle Scholar
  121. Rau, G. H., Sweeney, R. E., and Kaplan, I. R., 1982, Plankton 13C/12C ratio changes with latitude: Differences between northern and southern oceans, Deep-Sea Res. 29:1035–1039.CrossRefGoogle Scholar
  122. Rau, G. H., Arthur, M. A., and Dean, W. E., 1987, 15N/14N variations in Cretaceous Atlantic sedimentary sequences: Implications for past changes in marine nitrogen biogeochemistry, Earth Planet. Sci. Lett. 82:269–279.CrossRefGoogle Scholar
  123. Rau, G. H., Takahashi, X., and Des Marais, D. J., 1989, Latitudinal variations in plankton δ13C: Implications for CO2 and productivity in past oceans, Nature 341:516–518.CrossRefGoogle Scholar
  124. Rau, G. H., Takahashi, T., Des Marais, D. J., and Sullivan, C. W., 1991, Particulate organic matter δ13C variations across the Drake Passage, J. Geophys. Res. 96:15131–15135.CrossRefGoogle Scholar
  125. Rieley, G., Collier, R. J., Jones, D. M., Eglinton, G., Eakin, P. A., and Fallick, A. E., 1991, Sources of sedimentary lipids deduced from stable carbon isotope analyses of individual compounds, Nature 352:425–427.CrossRefGoogle Scholar
  126. Rogers, M. A., van Hinte, J., and Sugden J. G., 1972, Organic carbon 13C values from Cretaceous, Tertiary and Quaternary marine sequences in the North Atlantic, in: Initial Reports of the Deep Sea Drilling Project, Vol. XII (T. A. Davies, ed.), U.S. Government Printing Office, Washington D.C., pp. 1115–1126.Google Scholar
  127. Rosenfeld, J. K., 1979, Amino acid diagenesis and absorption in nearshore anoxic sediments, Limnol. Oceanogr. 24:1014–1021.CrossRefGoogle Scholar
  128. Rubinsztain, Y., Ioselis, P., Ikan, R., and Aizenshtat, Z., 1984, Investigations on the structural units on melanoidins, Org. Geochem. 6:791–804.CrossRefGoogle Scholar
  129. Rubinsztain, Y., Yariv, S., Ioselis, P., Aizenshtat, Z., and Ikan, R., 1986a, Characterization of melanoidins by IR spectroscopy—I. Galactose-glycine melanoidins, Org. Geochem. 9:117–125.CrossRefGoogle Scholar
  130. Rubinsztain, Y., Yariv, S., Ioselis, P., Aizenshtat, Z., and Ikan, R., 1986b, Characterization of melanoidins by IR spectroscopy—II. Melanoidins of galactose with arginine, isoleucine, lysine and valine, Org. Geochem. 9:371–374.CrossRefGoogle Scholar
  131. Sackett, W. M., 1964, The depositional history and isotopic organic carbon composition of marine sediments, Mar. Geol. 2:173–185.CrossRefGoogle Scholar
  132. Sackett, W. M., 1986, δ13C signatures of organic carbon in southern high latitude deep sea sediments; paleotemperature implications, Org. Geochem. 9:63–68.CrossRefGoogle Scholar
  133. Sackett, W. M., and Thompson, R. R., 1963, Isotope organic carbon composition of Recent continental derived clastic sediments of Eastern Gulf Coast, Gulf of Mexico, Am. Assoc. Petrol. Geol. 147:535–531.Google Scholar
  134. Sackett, W. M., Eckelmann, W. R., Bender, M. L., and Be, A. W. H., 1965, Temperature dependence of carbon isotope compositions in marine plankton and sediments, Science 148:235–237.CrossRefGoogle Scholar
  135. Sackett, W. M., Eadie, B. J., and Exner, M. E., 1974, Stable isotopic composition of organic carbon in recent Antarctic sediments, in: Advances in Organic Geochemistry 1973 (B. Tissot, and F. Bienner, eds.), Editions Technip, Paris, pp. 661–671.Google Scholar
  136. Saino, T., and Hattori, A., 1980, 15N natural abundance in oceanic suspended particulate matter, Nature 283:752–754.CrossRefGoogle Scholar
  137. Saino, T., and Hattori, A., 1985, Variation in 15N natural abundance of suspended organic matter in shallow oceanic waters, in: Marine and Estuarine Geochemistry (A. C. Sigleo and A. Hattori, eds.), Lewis Publishers, Chelsea, Michigan, pp. 1–14.Google Scholar
  138. Saino, T., and Hattori, A., 1987, Geographical variation of the water column distribution of suspended particulate nitrogen and its 15N abundance in the Pacific and its marginal seas, Deep-Sea Res. 28:901–909.Google Scholar
  139. Sargent, J. R., Hopkins, C. C. E., Seiring, J. V., and Youngson, A., 1983, Partial characterization of organic material in surface sediments from Balsfjorden, northern Norway, in relation to its origin and nutritional value for sediment-ingesting animals, Mar. Biol. 76:87–94.CrossRefGoogle Scholar
  140. Schidlowski, M., Hayes, J. M., and Kaplan, I. R., 1983, Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen and nitrogen, in: Earth’s Earliest Biosphere: Its Origin and Evolution (J. W. Schopf, ed.), Princeton University Press, Princeton, New Jersey, pp. 149–186.Google Scholar
  141. Schoenheimer, R., and Rittenberg, D., 1939, Studies in protein metabolism, J. Biol. Chem. 127:285–344.Google Scholar
  142. Serban, A., Engel, M. H., and Macko, S. A., 1988, The distribution, stereochemistry and stable isotopic composition of amino acid constituents of fossil and modern mollusk shells, Org. Geochem. 13:1123–1129.CrossRefGoogle Scholar
  143. Shimmelmann, A., and DeNiro, M. J., 1986, Stable isotopic studies on chitin. II. The 13C/12C and 15N/14N ratios in arthropod chitin, Contrib. Mar. Sci. 29:113–130.Google Scholar
  144. Shimmelmann, A., DeNiro, M. J., Poulicek, M., Voss-Foucart, A., Goffinet, G., and Jeuniaux, C., 1986, Stable isotopic composition of chitin from arthropods recovered in archaeological contexts as palaeoenvironmental indicators, J. Arch. Sci. 13:553–566.CrossRefGoogle Scholar
  145. Sigleo, A. C., and Hattori, A. (eds.), 1985, Marine and Estuarine Geochemistry, Lewis Publishers, Chelsea, Michigan.Google Scholar
  146. Sigleo, A. C., and Macko, S. A., 1985, Stable isotope and amino acid composition of estuarine dissolved colloidal material, in: Marine and Estuarine Geochemistry (A. C. Sigleo and A. Hattori, eds.), Lewis Publishers, Chelsea, Michigan, pp. 30–46.Google Scholar
  147. Silfer, J. A., Engel, M. H., Macko, S. A., and Jumeau, E. J., 1991, Stable carbon isotope analysis of amino acid enantiomers by conventional isotope ratio mass spectrometry and combined gas chromatography-isotope ratio mass spectrometry, Anal. Chem. 63:370–374.CrossRefGoogle Scholar
  148. Silfer, J. A., Engel, M. H., and Macko, S. A., 1992, Kinetic fractionation of stable carbon and nitrogen isotopes during peptide bond hydrolysis: Experimental evidence and geochemical implications, Isotope Geosci. 15:211–222.CrossRefGoogle Scholar
  149. Sohn, M. L. (ed.), 1986, Organic Marine Chemistry, American Chemical Society, Washington, D.C.Google Scholar
  150. Spiker, E. C., and Hatcher, P. G., 1984, Carbon isotope fractionation of sapropelic organic matter during early diagenesis, Org. Geochem. 5:283–290.CrossRefGoogle Scholar
  151. Spiker, E. C., and Hatcher, P. G., 1987, The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood, Geochim. Cosmochim. Acta 51:1385–1391.CrossRefGoogle Scholar
  152. Stacey, F. W., Lindsay, J. G., and Bourns, A. N., 1952, Isotope effects in the thermal deammonation of phthalamide, Can. J. Chem. 30:135–145.CrossRefGoogle Scholar
  153. Starikova, N. D., and Korzhikova, R. I., 1969, Amino acids in the Black Sea, Oceanology 9:509–518.Google Scholar
  154. Summons, R., and Powell, T. G., 1986, Chlorobiaceae in Paleozoic seas revealed by biological markers, isotopes and geology, Nature 319:763–765.CrossRefGoogle Scholar
  155. Sweeney, R. E., and Kaplan, I. R., 1980a, Tracing flocculent industrial and domestic sewage transport on San Pedro shelf, southern California by nitrogen and sulfur isotope ratios, Mar. Environ. Res. 3:214–224.Google Scholar
  156. Sweeney, R. E., and Kaplan, I. R., 1980b, Natural abundances of 15N as a source indicator for near-shore marine sedimentary and dissolved nitrogen, Mar. Chem. 9:81–94.CrossRefGoogle Scholar
  157. Sweeney, R. E., Liu, K. K., and Kaplan, I. R., 1978, Oceanic nitrogen isotopes and their uses in determining the source of sedimentary nitrogen, in: Stable Isotopes in the Earth Sciences (B. W. Robinson, ed.), New Zealand Department of Scientific and Industrial Research Bulletin 220, Wellington, New Zealand, pp. 9–26.Google Scholar
  158. Taguchi, K., and Sampei, Y., 1986, The formation, and clay mineral and CaCO3 association reactions of melanoidins, in: Advances in Organic Geochemistry 1985 (D. Leythaeuser and J. Rullkötter, eds.), Org. Geochem. 10:1081–1089.CrossRefGoogle Scholar
  159. Takigiku, R., 1987, Isotopic and molecular indicators of origins of organic compounds in sediments, Ph.D. Thesis, University of Indiana.Google Scholar
  160. Tissot, B. P., and Welte, D. H., 1984, Petroleum Formation and Occurrence, Springer-Verlag, New York.Google Scholar
  161. Treibs, A., 1935, Chlorophyll-und Haminderivivate in bituminosen Gesteinen, Erdolen, Erdwachsen und Asphalten, Ann. Chem. 510:42–62.Google Scholar
  162. Vogler, E. A., and Hayes, J. M., 1980, Carbon isotopic compositions of carboxyl groups of biosynthesized fatty acids, in: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon Press, Oxford, pp. 697–704.Google Scholar
  163. Vogler, E. A., Meyers, P. A., and Moore, W. A., 1981, Comparison of Michigan basin crude oils, Geochim. Cosmochim. Acta 45:2287–2293.CrossRefGoogle Scholar
  164. Wada, E., 1980, Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments, in: Isotope Marine Chemistry (E. D. Goldberg, and Y. Horibe, eds.), Uchida Rokakuho Publ., Tokyo, pp. 375–398.Google Scholar
  165. Wada, E., Kadonaga, T., and Matsuo, S., 1975, 15N abundance in nitrogen of naturally occurring substances and global assessment of denitrification from isotopic viewpoint, Geochem. J. 9:139–148.CrossRefGoogle Scholar
  166. Wakeham, S. G., Lee, C., Farrington, J. W., and Gagosian, R. B., 1984, Biochemistry of particulate organic matter in the oceans: Results from sediment trap experiments, Deep-Sea Res., Part A 31:509–528.CrossRefGoogle Scholar
  167. Wehmiller, J. F., and Hare, P. E., 1972, Amino acid content of some samples from the Deep Sea Drilling Project, in: Initial Reports of the Deep Sea Drilling Project, Vol. IX, U.S. Government Printing Office, Washington, D.C., pp. 903–905.Google Scholar
  168. Welte, D. H., 1969, Determination of C13/C12 isotope ratios of individual higher n-paraffins from different petroleums, in: Advances in Organic Geochemistry 1968 (P. A. Schenck and I. Havenaar, eds.), Pergamon Press, Oxford, pp. 269–277.Google Scholar
  169. Welte, D. H., 1974, Recent advances in organic geochemistry of humic substances and kerogen. A review, in: Advances in Organic Geochemistry 1973 (B. Tissot and F. Bienner, eds.), Editions Technip, Paris, pp. 39–52.Google Scholar
  170. Whelan, J. K., 1977, Amino acids in a surface sediment core of the Atlantic abyssal plain, Geochim. Cosmochim. Acta 41:803–810.CrossRefGoogle Scholar
  171. Yamamoto, S., and Ishiwatari, R., 1989, A study of the formation mechanism of sedimentary humic substances—II. Protein-based melanoidin model, Org. Geochem. 14:479–489.CrossRefGoogle Scholar
  172. Zieman, J. C., Macko, S. A., and Mills, A. L., 1984, Role of sea-grasses and mangroves in estuarine food webs: Temporal and spatial changes in stable isotope composition and amino acid content during decomposition, Bull. Mar. Sci. 35:380–392.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Stephen A. Macko
    • 1
  • Michael H. Engel
    • 2
  • Patrick L. Parker
    • 3
  1. 1.Department of Environmental SciencesThe University of VirginiaCharlottesvilleUSA
  2. 2.School of Geology and GeophysicsThe University of OklahomaNormanUSA
  3. 3.Department of Marine SciencesThe University of Texas at AustinAustinUSA

Personalised recommendations