Advertisement

Biospheric Implications of Global Environmental Change

  • Allen M. Solomon
  • Wolfgang Cramer

Abstract

A currently popular question is whether the global warming, measured during the past century, and especially in the decade of the 1980s, is the warming expected to occur because of human-produced (anthropogenic) increases of atmospheric greenhouse gases (GHGs). These include not only CO2, but also methane, ozone, water vapor, and other radiatively active gases. The answer to this question has great political significance, serving as a basis for potential governmental actions.

Keywords

Carbon Storage Global Environmental Change Atmospheric Carbon Dioxide Global Carbon Cycle Reproductive Maturity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M. and Woodward, F. I. (1990). Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature, 348, 711–14.CrossRefGoogle Scholar
  2. Adams, J. M. and Woodward, F. I. (1989). Patterns in tree species richness as a test of the glacial extinction hypothesis. Nature, 339, 699–701.CrossRefGoogle Scholar
  3. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. and Lorius, C. (1987). Vostok ice core provides 160 000-year record of atmospheric CO2. Nature, 329, 408–14.CrossRefGoogle Scholar
  4. Bazzaz, F. A. (1990). The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology & Systematics, 21, 167–96.CrossRefGoogle Scholar
  5. Berner, R. A., (1990). Atmospheric carbon dioxide levels over Phanerozoic time. Science, 249, 1382–86.PubMedCrossRefGoogle Scholar
  6. Billings, W. D., Luken, J. O., Mortensen, D. A., and Peterson, K. M. (1982). Arctic tundra: A source or sink for atmospheric carbon dioxide in a changing environment? Oecologia, 53, 7–11.CrossRefGoogle Scholar
  7. Boden, T. A., Sepanski, F.J. and Stoss, F.W. (1990). Trends’91: A Compendium of Data on Global Change. ORNLICDIAC-46. Oak Ridge, TN: Oak Ridge National Laboratory.Google Scholar
  8. Broecker, W. S., Takasashi, T., Simpson, J. J. and Peng, T.-H. Fate of fossil fuel carbon dioxide and the global carbon budget. Science, 206, 409–17.Google Scholar
  9. Brown, K. and Higginbotham, K. O. (1986). Effects of carbon dioxide enrichment and nitrogen supply on growth of boreal tree seedlings. Tree Physiology, 2, 223–32.PubMedCrossRefGoogle Scholar
  10. Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T., Le Treut, H., Li, Z.-X, Liang, X.-Z., Mitchell, J. F. B., Morcrette, J.-J, Randall, D. A., Riches, M. R., Roeckner, E., Schlese, U., Slingo, A., Taylor, K. E., Washington, W. M., Wetherald, R. T., and Yagai, I. (1989). Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513–16.PubMedCrossRefGoogle Scholar
  11. Cohen, S. B. (1973). (1973). Oxford World Atlas. New York: Oxford University Press.Google Scholar
  12. Crutzen, P. J. and Andreae, M. O. (1990). Biomass burning in the Tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 1669–78.PubMedCrossRefGoogle Scholar
  13. Davis, M. B. (1981). Quaternary history and the stability of forest communities. In Forest Succession: Concepts and Application, ed. D. C. West, H. H. Shugart, and D. B. Botkin, pp. 132–53. New York: Springer-Verlag.Google Scholar
  14. Davis, M. B., Woods, K. D., Webb, S. L. and Futyma, D. (1986). Dispersal versus climate: Expansion of Fagus and Tsuga into the Upper Great Lakes region. Vegetatio, 67, 93–103.CrossRefGoogle Scholar
  15. Drake, B. G. (1989). Effects of Elevated Carbon Dioxide on Chesapeake Bay Wetlands. IV. Ecosystem and Whole Plant Responses, April–November, 1988. Prog. Report No. 051, Research, Atmospheric and Climate Research Division, U.S. Department of Energy, Washington, D.C.Google Scholar
  16. Friedli, H., Loetscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B. (1986). Ice core record of 13C12C ratio of atmospheric CO2 in the past two centuries. Nature, 324, 237–38.CrossRefGoogle Scholar
  17. Gammon, R. H., Sundquist, E. T. and Fraser, P. J. (1985). History of carbon dioxide in The atmosphere. In Atmospheric Carbon Dioxide and the Global Carbon Cycle, ed. J. R. Trabalka, pp. 25–62. DOE/ER-0239, Washington, D.C. U.S. Dept. Energy.Google Scholar
  18. Gear, A. J. and Huntley, B. (1991). Rapid changes in the range limits of scots pine 4 000 years ago. Science, 251, 544–47.PubMedCrossRefGoogle Scholar
  19. Goudriaan, J. (1986). Simulation of ecosystem response to rising CO2, with special attention to interfacing with the atmosphere. In Climate-Vegetation Interactions, ed. C. Rosenzweig and R. Dickinson, pp. 49–53. UCAR Report OIES-2, NASA, Office for Interdisciplinary Earth Studies, P.O. Box 3000, Boulder, Colorado.Google Scholar
  20. Graumlich, L. J. (1991). Subalpine tree growth, climate, and increasing CO2: An assessment of recent growth trends. Ecology, 72, 1–11.CrossRefGoogle Scholar
  21. Grove, A. T. (1984). Changing climate, changing biomass, and changing atmospheric CO2. Progress in Biometeorology, 3, 5–10.Google Scholar
  22. Hansen, J. E. (1989). A time to cry wolf. Letter submitted to New York Times, July, 1989 (pers. comm.).Google Scholar
  23. Hari, P., Arovaara, H., Raunemaa, T. and Hautojaervi, A. (1984). Forest growth and energy production, a method for detecting trends in growth potential of trees. Canadian Journal Forest Research, 14, 437–40.CrossRefGoogle Scholar
  24. Hari, P. and Arovaara, H. (1988). Detecting CO2 induced enhancement on the radial increment of trees: Evidence from northern timber line. Scandinavian Journal Forest Research, 3, 61–74.Google Scholar
  25. Houghton, R. A. and Woodwell, G. M. (1989). Global climatic change. Scientific American, 260, 18–26.CrossRefGoogle Scholar
  26. Imbrie, J. and Imbrie, J. Z. (1980). Modeling the climatic response to orbital variations. Science, 207, 943–53.PubMedCrossRefGoogle Scholar
  27. Jacoby, G. C. (1986). Long-term temperature trends and a positive departure from the climate-growth response since the 1950s in high elevation lodgepole pine from California. In Climate-Vegetation Interactions, ed. C. Rosenzweig and R. Dickinson, pp. 81–83. Rept. OIES-2, UCAR, Boulder, Colorado.Google Scholar
  28. Jäger, J. W. (1988). Developing Policies for Responding to Climatic Change. WCIP-1, WMO/TD- No. 255, W.M.O., Zurich, Switzerland.Google Scholar
  29. Johnson, A. H. (1983). Red spruce decline in the northeastern U.S.: Hypotheses regarding the role of acid rain. Journal of Pollution Control Association, 33, 1049–54.CrossRefGoogle Scholar
  30. Kasting, J. F. and Ackerman, T. P. (1986). Climatic consequences of very high carbon dioxide levels in the earth’s early atmosphere. Science, 234, 1383–85.PubMedCrossRefGoogle Scholar
  31. Keeling, C. D., Bacastow, R. B., and Whorf, T. P. (1982). Measurements of the concentration of carbon dioxide at Mauna Loa Observatory, Hawaii. Carbon Dioxide Review: 1982, ed. W. C. Clark, pp. 377–85. NY: Oxford University Press.Google Scholar
  32. Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C, Whorf, T. P., Heimann, M., Mook, W. G., and Roeloffzen, H. (1989). A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. In Aspects of Climate Variability in the Pacific and the Western Americas. ed. D. H. Peterson, Geophysical Monographs, 55, 165–235. Amer. Geophys. Union, Washington D.C.CrossRefGoogle Scholar
  33. Kerr, R. A. (1991). Global temperature hits record again. Science, 251, 274.PubMedCrossRefGoogle Scholar
  34. Kerr, R. A. (1992). 1991: Warmth, chill may follow. Science, 255, 281.PubMedCrossRefGoogle Scholar
  35. Kramer, P. J., and Sionit, N. (1987). Effects of increasing carbon dioxide concentration on the physiology and growth of forest trees. In The Greenhouse Effect, Climate Change, and U.S. Forests, ed. W. E. Shands and J. S. Hoffman, pp. 219–46. Washington D.C: Conservation Foundation.Google Scholar
  36. LaMarche, V. C, Graybill, D. A., Fritts, H. C. and Rose, M. R. (1984). Increasing atmospheric carbon dioxide: Tree ring evidence for growth enhancement in natural vegetation. Science, 225, 1019–121.CrossRefGoogle Scholar
  37. Larcher, W. (1983). Physiological Plant Ecology. 2nd ed. NY: Springer-Verlag.Google Scholar
  38. Larsen, C. E. (1987). Geological History of Glacial Lake Algonquin and the Upper Great Lakes. Reston, Virginia: U.S. Geol. Surv. Bull. 1801, U.S.G.S.Google Scholar
  39. Leemans, R. (1991). Ecological and Agricultural aspects of global change. In: Environmental Implications of Global Change, J. P. Pernetta, ed. I.U.C.N. Goland, Switzerland, pp. 21–38.Google Scholar
  40. Lemon, E. R. (1983). CO 2 and Plants: The Response of Plants to Rising Levels of Carbon Dioxide. Boulder, Colorado: Westview Press.Google Scholar
  41. Lorius, C., Jouzel, J., Raynaud, D., Hansen, J. and Le Treut, H. (1990). The ice-core record: Climate sensitivity and future greenhouse warming. Nature, 347, 139–45.CrossRefGoogle Scholar
  42. Manabe, S. and Stouffer, R. J. (1980). Sensitivity of global climate model to an increase of CO2 concentration in the atmosphere. Journal of Geophysical Research, 85, 5529–54.CrossRefGoogle Scholar
  43. Manabe, S. and Wetherald, R. T. (1987). Reduction in summer soil wetness induced by an increase in atmospheric carbon dioxide. Science, 232, 626–28.CrossRefGoogle Scholar
  44. Mann, L. K. (1986). Changes in soil carbon storage after cultivation. Soil Science, 142, 279–288.CrossRefGoogle Scholar
  45. McLaughlin, S. B., Blasing, T. J., Mann, L. K., and Duvick, D. N. (1983). Effects of acid rain and gaseous pollutants on forest productivity: A region scale approach. Journal of the Air Pollution Control Association, 33, 1042–49.CrossRefGoogle Scholar
  46. Mooney, H. A., Drake, B. G., Luxmoore, R. J., Oechel, W. C., and Pitelka, L. F. (1991). Predicting ecosystem responses to elevated CO2 concentrations. BioScience, 41, 96–104.CrossRefGoogle Scholar
  47. Moran, J. M. (1972). An analysis of periglacial climatic indicators of late glacial time in North America. Ph.D. thesis. University Wisconsin, Madison.Google Scholar
  48. Nilsson, S. and Duinker, P. N. (1987). Extent of forest decline in Europe: A synthesis of survey results. Environment, 29, 4–9, 30–31.Google Scholar
  49. Norby, R. J., Luxmoore, R. J., O’Neill, E. G. and Weller, D. G. (1984). Plant responses to elevated atmospheric CO2 with emphasis on belowground processes. ORNL/TM-9426, Oak Ridge National Laboratory, Oak Ridge, Tennessee.Google Scholar
  50. Norby, R. J., O’Neill, E. G. and Luxmoore, R. J. (1986a). Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient-poor soil. Plant Physiology, 82, 83–9.PubMedCrossRefGoogle Scholar
  51. Norby, R. J., Pastor, J. and Melillo, J. M. (1986b). Carbon-nitrogen interactions in CO2-enriched white oak: Physiological and long-term perspectives. Tree Physiology, 2, 233–41.PubMedCrossRefGoogle Scholar
  52. Oechel, W. C., and Strain, B. R. (1985). Native species responses to increased atmospheric carbon dioxide concentration. In Direct Effects of Increasing Carbon Dioxide on Vegetation, ed. B. R. Strain and J. D. Cure, pp. 118–54. DOE/ER-0238. U.S. Dept. Energy, Washington D.C.Google Scholar
  53. Olson, J. S., Watts, J. A. and Allison, L. J. (1983). Carbon in Live Vegetation of Major World Ecosystems. ORNL-5862 Oak Ridge National Laboratory, Oak Ridge, Tennessee.Google Scholar
  54. Overpeck, J. T. and Bartlein, P. J. (1989). Assessing the response of vegetation to future climate change. Ecological response surfaces and paleoecological model validation. In The Potential Effects of Global Climate Change on the United States: Appendix D— Forests, ed. J. B. Smith and D. A. Tirpak, pp. 1–1 to 1–32. U.S. Env. Protection Agency, Washington D.C.Google Scholar
  55. Peters, R. L. (1988). Overview of conservation implications of the greenhouse effect. Conference on Consequences of the Greenhouse Effect for Biological Diversity. World Wildlife Fund, Washington D.C. (Abstract).Google Scholar
  56. Peters, R. L. and Darling, J. D. S. (1985). The greenhouse effect and nature reserves. BioScience, 35, 707–17.CrossRefGoogle Scholar
  57. Plochmann, R. (1984). Air pollution and the dying forests of Europe. American Forester, 90, 17–21, 56.Google Scholar
  58. Post, W. M., Peng, T.-H., Emanuel, W. R., King, A. W., Dale, V. H., and DeAngelis, D. L. (1990). The global carbon cycle. American Scientist, 78, 310–26.Google Scholar
  59. Prentice, K. C. and Fung, I. Y. (1990). The sensitivity of terrestrial carbon storage to climate change. Nature, 346, 48–51.CrossRefGoogle Scholar
  60. Schlesinger, M. E. and Mitchell, J. F. B. (1985). Model projections of the equilibrium climate response to increased carbon dioxide. In Projecting the Climatic Effects of Increasing Carbon Dioxide, ed. M. C. MacCracken and F. M. Luther, pp. 81–147. DOE/ER-0237, U.S. Dept. of Energy, Washington D.C.Google Scholar
  61. Schlesinger, W. H. (1990). Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 348, 232–34.CrossRefGoogle Scholar
  62. Schneider, S. H. (1989). The changing climate. Scientific American, 261, 38–47.CrossRefGoogle Scholar
  63. Schweingruber, F. H. (1992). Spatial hemispheric reconstructions of summer temperatures. Proc. Symp. Boreal Forests: State, Dynamics and Anthropogenic Influence, U.S.S.R. State Comm. on Forests, Moscow, (in press).Google Scholar
  64. Shugart, H. H., Antonovsky, M. Y., Jarvis, P. G. and Sandford, A. P. (1986). CO2, climatic change and forest ecosystems. In The Greenhouse Effect, Climatic Change, and Ecosystems, ed. B. Bolin, B. R. Doos, J. Jaeger, and R. A. Warrick, pp. 475–521. New York: John Wiley.Google Scholar
  65. Solomon, A. M. (1986). Transient response of forests to CO2-induced climate change: Simulation modeling experiments in eastern North America. Oecologia, 68, 567–79.CrossRefGoogle Scholar
  66. Solomon, A. M. (1988). Ecosystem theory required to identify future forest responses to changing CO2 and climate. In Ecodynamics: Contributions to Theoretical Ecology, ed. W. Wolff, C.-J. Soeder, and F. R. Drepper, pp. 258–274, Berlin: Springer-Verlag.Google Scholar
  67. Solomon, A. M. and Leemans, R. (1990). Climatic change and landscape ecological response: Issues and analysis. In Landscape Ecological Impact of Climatic Change, ed. M. M. Boer and R. S. de Groot, pp. 293–311. Amsterdam: JOS Press.Google Scholar
  68. Solomon, A. M. and Tharp, M. L. (1985). Simulation experiments with late Quaternary carbon storage in mid-latitude forest communities. In The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present. ed. E. T. Sundquist and W. S. Broecker, pp. 235–50. Geophys. Monogr. 32, Amer. Geophys. Union, Washington D.C.CrossRefGoogle Scholar
  69. Solomon, A. M., Tharp, M. L., West, D. C, Taylor, G. E., Webb, J. W. and Trimble, J. L. (1984). Response of Unmanaged Forests to CO 2 -Induced Climate Change: Available Information, Initial Tests, and Data Requirements. TR009, DOE/NBB-0053, U.S. Dept. of Energy, Washington D.C.Google Scholar
  70. Solomon, A. M. and West, D. C. (1985). Potential responses of forests to CO2-induced climate change. In Characterization of Information Requirements for Studies of CO 2 Effects: Water Resources, Agriculture, Fisheries, Forests and Human Health, ed. M. R. White, pp. 145–69. DOE/ER-0236, U.S. Dept. Energy, Washington D.C.Google Scholar
  71. Strain, B. R. (1987). Direct effects of increasing atmospheric CO2 on plants and ecosystems. Tree, 2, 18–21.PubMedGoogle Scholar
  72. Strain, B. R., and Cure, J. D. ed. (1985). Direct Effects of Increasing Carbon Dioxide on Vegetation. DOE/ER-0238. U.S. Dept. Energy, Washington, D.C.Google Scholar
  73. Sundquist, E. T. (1986). Geologic analogs: Their value and limitations in carbon dioxide research. In The Changing Carbon Cycle: A Global Analysis, ed. J. R. Trabalka and D. E. Reichle, pp. 371–402. New York: Springer-Verlag.Google Scholar
  74. Tans, P. P., Fung, I. Y. and Takahashi, T. (1990). Observational constraints on the global atmospheric CO2 budget. Science, 247, 1431–38.PubMedCrossRefGoogle Scholar
  75. Thompson, S. L. and Schneider, S. H. (1982). Carbon dioxide and climate: The importance of realistic geography in estimating the transient temperature response. Science, 217, 1031–33.PubMedCrossRefGoogle Scholar
  76. Trabalka, J. R., Edmonds, J. A., Reilly, J. M., Gardner, R. H. and Vorhees, L. D. (1985). Human alterations of the global carbon cycle and the projected future. In Atmospheric Carbon Dioxide and the Global Carbon Cycle, ed. J. R. Trabalka, pp. 247–87. DOE/ER-0239, U.S. Dept. of Energy, Washington D.C.Google Scholar
  77. U.S.D.A. Forest Service. (1982) An Analysis of the Timber Situation in the U.S. 1952–2030. For. Res. Rept. No. 23, U.S. Dept. Agr., Washington D.C.Google Scholar
  78. Waring, R. H. (1987). Characteristics of trees predisposed to die. Bioscience, 37, 569–74.CrossRefGoogle Scholar
  79. Washington, W. (1990). Where’s the Heat? The ocean may be the missing sink. Nat. Hist. 90 (3), 66–72.Google Scholar
  80. Webb, T. III. (1986). Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio, 67, 75–91.CrossRefGoogle Scholar
  81. Whittaker, R. H. and Likens, G. E. (1973). Carbon in the biota. In Woodwell, G. M. and E. V. Pecan, eds., Carbon in the Biosphere, CONF-720510, U.S. Atomic Energy Comm., Washington D.C.Google Scholar
  82. Wigley, T. M. L., and Jones, P. D. (1981). Detecting CO2-induced climate change. Nature, 292, 205–208.CrossRefGoogle Scholar
  83. Woodwell, G. M., Whittaker, R. H., Reiners, W. A., Likens, G. E., Delwiche, C. C. and Botkin, D. B. (1978). The biota and the World carbon budget. Science, 199, 141–46.PubMedCrossRefGoogle Scholar
  84. Woodwell, G. M., Hobbie, J. E., Houghton, R. A., Melillo, J. M., Moore, B., Peterson, B. J. and Shaver, G. R. (1983). Global deforestation: Contribution to atmospheric carbon dioxide. Science, 222, 1081–86.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Allen M. Solomon
  • Wolfgang Cramer

There are no affiliations available

Personalised recommendations