Advertisement

Mechanisms Controlling Methane Emission from Wetland Rice Fields

  • Ralf Conrad

Abstract

Wetland rice fields are an important source in the global budget of atmospheric CH4 and, thus, have a significant impact on climate and on atmospheric photochemistry. Methane emission rates from rice fields vary greatly with field site, management, time of day, and season. Field and laboratory studies of CH4 turnover in paddy soil are reviewed with respect to the mechanisms that control the emission of CH4 into the atmosphere, i.e., CH4 production, CH4 diffusion, CH4 oxidation, and interaction of CH4 turnover with nutrients such as nitrogen, iron, and sulfur compounds. Methane production involves a complex anaerobic microbial community that degrades organic matter via various intermediates to CO2 and CH4. The rice aerenchyma allows the diffusion of O2 into the rhizosphere and, thus, provides oxic microsites within the anoxic submerged soil. This allows the oxidation of CH4 and makes the involvement of other aerobic bacteria in the turnover of CH4 possible. The rice aerenchyma also provides the predominant route for escape of CH4 from the soil into the atmosphere and may tap bubbles that constitute CH4 reservoirs in the submerged soil.

Keywords

Rice Plant Rice Straw Rice Field Methane Production Methane Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anthony, C. 1986. Bacterial oxidation of methane and methanol. Adv. Microb. Physiol. 27:113–210.Google Scholar
  2. 2.
    Araragi, M., and B. Tangcham. 1979. Effect of rice straw on the composition of volatile soil gas and microflora in the tropical paddy soil. Soil Sci. Plant Nutr. 25:283–295.CrossRefGoogle Scholar
  3. 3.
    Aselmann, I., and P.J. Crutzen. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 8:307–358.CrossRefGoogle Scholar
  4. 4.
    Bartlett, R.J. 1986. Soil redox behaviour. In D.L. Sparks (ed.), Soil Physical Chemistry, CRC Press, Boca Raton, FL, pp. 179–207.Google Scholar
  5. 5.
    Bollag, J.M., and S.T. Czlonkowski. 1973. Inhibition of methane formation in soil by various nitrogen-containing compounds. Soil Biol. Biochem. 5:673–678.CrossRefGoogle Scholar
  6. 6.
    Buresh, R.J., and W.H. Patrick, Jr. 1978. Nitrate reduction to ammonium in anaerobic soil. Soil Sci. Soc. Amer. J. 42:913–918.CrossRefGoogle Scholar
  7. 7.
    Cicerone, R.J., and R.S. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles 2:299–327.CrossRefGoogle Scholar
  8. 8.
    Cicerone, R.J., and J.D. Shetter. 1981. Sources of atmospheric methane: measurements in rice paddies and a discussion. J. Geophys. Res. 86:7203–7209.CrossRefGoogle Scholar
  9. 9.
    Cicerone, R.J., J.D. Shetter, and C.C. Delwiche. 1983. Seasonal variation of methane flux from a California rice paddy. J. Geophys. Res. 88:11022–11024.CrossRefGoogle Scholar
  10. 10.
    Conrad, R. 1989. Control of methane production in terrestrial ecosystems. In M.O. Andreae and D.S. Schimel (eds.), Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Dahlem Konferenzen, J. Wiley and Sons, Chichester, pp. 39–58.Google Scholar
  11. 11.
    Conrad, R. 1989. Activity of methanogenic bacteria in anoxic sediments: Role of H2 syntrophic methanogenic bacterial associations. In T. Hattori, Y. Ishida, Y. Maruyama, R.Y. Morita, and A. Uchida (eds.), Recent Advances in Microbial Ecology, Japan Scientific Societies Press, Tokyo, pp. 118–122.Google Scholar
  12. 12.
    Conrad, R. 1993. Anaerobic hydrogen metabolism in aquatic sediments. In D.D. Adams, S.P. Seitzinger, and P.M. Crill (eds.), Cycling of Reduced Gases in the Hydrosphere, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart (in press).Google Scholar
  13. 13.
    Conrad, R., F. Bak, H.J. Seitz, B. Thebrath, H.P. Mayer, and H. Schütz. 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol. 62:285–294.CrossRefGoogle Scholar
  14. 14.
    Conrad, R., H.P. Mayer, and M. Wüst. 1989. Temporal change of gas metabolism by hydrogen-syntrophic methanogenic bacterial associations in anoxic paddy soil. FEMS Microbiol. Ecol. 62:265–274.CrossRefGoogle Scholar
  15. 15.
    Conrad, R., and F. Rothfuss. 1991. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol. Fertil. Soils 12:28–32.CrossRefGoogle Scholar
  16. 16.
    Conrad, R., H. Schütz, and W. Seiler. 1988. Emission of carbon monoxide from submerged rice fields into the atmosphere. Atmos. Environ. 22:821–823.CrossRefGoogle Scholar
  17. 17.
    Crutzen, P.J. 1983. Atmospheric interactions. Homogeneous gas reactions of C, N, and S containing compounds. In B. Bolin and R.B. Cook (eds.), The Major Bio-geochemical Cycles and Their Interactions, SCOPE 21, Wiley, New York, pp. 67–114.Google Scholar
  18. 18.
    Crutzen, P.J. 1987. Role of the tropics in atmospheric chemistry. In R.E. Dickinson (ed.), The Geophysiology of Amazonia, J. Wiley and Sons, New York, pp. 107–130.Google Scholar
  19. 19.
    DeBont, J.A.M., K.K. Lee, and D.F. Bouldin. 1978. Bacterial oxidation of methane in a rice paddy. Ecol. Bull. (Stockholm) 26:91–96.Google Scholar
  20. 20.
    Ehhalt, D.H., and U. Schmidt. 1978. Sources and sinks of atmospheric methane. Pageoph 116:452–464.CrossRefGoogle Scholar
  21. 21.
    Emde, R., and B. Schink. 1990. Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl. Environ. Microbiol. 56:2771–2776.Google Scholar
  22. 22.
    Emde, R., and B. Schink. 1990. Oxidation of glycerol, lactate, and propionate by Propionibacterium freudenreichii in a poised-potential amperometric culture system. Arch. Microbiol. 153:506–512.Google Scholar
  23. 23.
    Gowda, T.K.S., and I. Watanabe. 1985. Variation in the incidence of HZ oxidizing chemolithotrophic bacteria in rice grown under different cultivation conditions. Plant and Soil 85:97–105.CrossRefGoogle Scholar
  24. 24.
    Holzapfel-Pschorn, A., R. Conrad, and W. Seiler. 1985. Production, oxidation and emission of methane in rice paddies. FEMS Microbiol. Ecol. 31:343–351.Google Scholar
  25. 25.
    Holzapfel-Pschorn, A., R. Conrad, and W. Seiler. 1986. Effects of vegetation on the emission of methane from submerged paddy soil. Plant and Soil 92:223–233.CrossRefGoogle Scholar
  26. 26.
    Holzapfel-Pschorn, A., and W. Seiler. 1986. Methane emission during a cultivation period from an Italian rice paddy. J. Geophys. Res. 91:11803–11814.CrossRefGoogle Scholar
  27. 27.
    Hyman, M.R., and P.M. Wood. 1983. Methane oxidation by Nitrosomonas europaea. Biochem. J. 212:31–37.Google Scholar
  28. 28.
    Inubushi, K., H. Wada, and Y. Takai. 1984. Easily decomposable organic matter in paddy soil. 4. Relationship between reduction process and organic matter decomposition. Soil Sci. Plant Nutr. 30:189–198.CrossRefGoogle Scholar
  29. 29.
    Jones, R.D., and R.Y. Morita. 1983. Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl. Environ. Microbiol. 45:401–410.Google Scholar
  30. 30.
    Joshi, M.M., and J.P. Hollis. 1977. Interaction of Beggiatoa and rice plant: Detoxification of hydrogen sulfide in the rice rhizosphere. Science 195:179–180.CrossRefGoogle Scholar
  31. 31.
    Katyal, J.C., M.F. Carter, and P.L.G. Vlek. 1988. Nitrification activity in submerged soils and its relation to denitrification loss. Biol. Fertil. Soils 7:16–22.Google Scholar
  32. 32.
    Khalil, M.A.K., and R.A. Rasmussen. 1983. Sources, sinks, and seasonal cycles of atmospheric methane. J. Geophys. Res. 88:5131–5144.CrossRefGoogle Scholar
  33. 33.
    Khalil, M.A.K., and R.A. Rasmussen. 1990. Constraints on the global sources of methane and an analysis of recent budgets. Tellus 42B:229–236.Google Scholar
  34. 34.
    Khalil, M.A.K., R.A. Rasmussen, M.X. Wang, and L. Ren. 1991. Methane emissions from rice fields in China. Environ. Sci. Technol. 25:979–981.CrossRefGoogle Scholar
  35. 35.
    Krumböck, M., and R. Conrad. 1991. Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiol. Ecol. 85: 247–256.Google Scholar
  36. 36.
    Laskowski, D., and J.T. Morgan. 1967. The effect of nitrate and nitrous oxide on hydrogen and methane accumulation in anaerobically-incubated soils. Plant and Soil 27:357–368.CrossRefGoogle Scholar
  37. 37.
    Lindau, C.W., R.D. Delaune, W.H. Patrick, and P.K. Bollich. 1990. Fertilizer effects on dinitrogen, nitrous oxide, and methane emissions from lowland rice. Soil Sci. Soc. Amer. J. 54:1789–1794.CrossRefGoogle Scholar
  38. 38.
    Lindau, C.W., W.H. Patrick, R.D. DeLaune, and K.R. Reddy. 1990. Rate of accumulation and emission of N2, N2O and CH4 from a flooded rice soil. Plant and Soil 129:269–276.Google Scholar
  39. 39.
    Matthews, E., I. Fung, and J. Lerner. 1991. Methane emission from rice cultivation: geographic and seasonal distribution of cultivated areas and emissions. Global Biogeochem. Cycles 5:3–24.CrossRefGoogle Scholar
  40. 40.
    Mayer, H.P., and R. Conrad. 1990. Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil. FEMS Microbiol. Ecol. 73:103–112.CrossRefGoogle Scholar
  41. 41.
    Mosier, A.R., S.K. Mohanty, A. Bhadrachalam, and S.P. Chakravorti. 1990. Evolution of dinitrogen and nitrous oxide from soil to the atmosphere through rice plants. Biol. Fertil. Soils 9:61–67.CrossRefGoogle Scholar
  42. 42.
    Neue, H.U., P. Becker-Heidmann, and H.W. Scharpenseel. 1990. Organic matter dynamics, soil properties, and cultural practices in rice lands and their relationship to methane production. In A.F. Bouwman (ed.), Soils and the Greenhouse Effect, J. Wiley and Sons, Chichester, pp. 457–466.Google Scholar
  43. 43.
    Neue, H.U., and H.W. Scharpenseel. 1987. Decomposition pattern of 14C-labeled rice straw in aerobic and submerged rice soils of the Philippines. Sci. Total Environ. 62:431–434.CrossRefGoogle Scholar
  44. 44.
    Nouchi, I., S. Mariko, and K. Aoki. 1990. Mechanisms of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol. 94:59–66.CrossRefGoogle Scholar
  45. 45.
    Ponnamperuma, F.N. 1981. Some aspects of the physical chemistry of paddy soils. In Academia Sinica (ed.), Proceedings of Symposium on Paddy Soil, Science Press-Springer, Beijing, pp. 59–94.CrossRefGoogle Scholar
  46. 46.
    Ponnamperuma, F.N. 1985. Chemical kinetics of wetland rice soils relative to soil fertility. In Wetland Soils: Characterization, Classification and Utilization, Proceedings of Workshop IRRI 1984, IRRI, Los Banos, Philippines, pp. 71–89.Google Scholar
  47. 47.
    Prade, K., and G. Trolldenier. 1990. Denitrification in the rhizosphere of rice and wheat seedlings as influenced by plant K status, air-filled porosity and substrate organic matter. Soil Biol. Biochem. 22:769–773.CrossRefGoogle Scholar
  48. 48.
    Quay, P.D., S.L. King, J.M. Landsdown, and D.O. Wilbur. 1988. Isotopic composition of methane released from wetlands: Implications for the increase in atmospheric methane. Global Biogeochem. Cycles 2:385–397.CrossRefGoogle Scholar
  49. 49.
    Rajagopal, B.S., N. Belay, and L. Daniels. 1988. Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol. Ecol. 53:153–158.CrossRefGoogle Scholar
  50. 50.
    Raskin, I., and H. Kende. 1985. Mechanism of aeration in rice. Science 228:327–329.CrossRefGoogle Scholar
  51. 51.
    Reddy, K.R., and W.H. Patrick, Jr. 1986. Fate of fertilizer nitrogen in the rice root zone. Soil Sci. Soc. Amer. J. 50:649–651.CrossRefGoogle Scholar
  52. 52.
    Reddy, K.R., W.H. Patrick Jr., and C.W. Lindau. 1989. Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnol. Oceanogr. 34:1004–1013.Google Scholar
  53. 53.
    Sass, R.L., F.M. Fisher, P.A. Harcombe, and F.T. Turner. 1990. Methane production and emission in a Texas rice field. Global Biogeochem. Cycles 4:47–68.CrossRefGoogle Scholar
  54. 54.
    Sass, R.L., F.M. Fisher, P.A. Harcombe, and F.T. Turner. 1991. Mitigation of methane emissions from rice fields: Possible adverse effects of incorporated rice straw. Global Biogeochem. Cycles 5:275–287.CrossRefGoogle Scholar
  55. 55.
    Sass, R.L., F.M. Fisher, F.T. Turner, and M.F. Jund. 1991. Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation. Global Biogeochem. Cycles 5:335–350.CrossRefGoogle Scholar
  56. 56.
    Schütz, H., R. Conrad, S. Goodwin, and W. Seiler. 1988. Emission of hydrogen from deep and shallow freshwater environments. Biogeochem. 5:295–311.CrossRefGoogle Scholar
  57. 57.
    Schütz, H., A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg, and W. Seiler. 1989. A 3-year continuous records on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. 94:16405–16416.CrossRefGoogle Scholar
  58. 58.
    Schütz, H., W. Seiler, and R. Conrad. 1989. Processes involved in formation and emission of methane in rice paddies. Biogeochem. 7:33–53.CrossRefGoogle Scholar
  59. 59.
    Schütz, H., W. Seiler, and R. Conrad. 1990. Influence of soil temperature on methane emission from rice paddy fields. Biogeochem. 11:77–95.CrossRefGoogle Scholar
  60. 60.
    Schütz, H., W. Seiler, and H. Rennenberg. 1990. Soil and land use related sources and sinks of methane (CH4) in the context of the global methane budget. In A.F. Bouwman (ed.), Soils and the Greenhouse Effect, J. Wiley and Sons, Chichester, pp. 269–285.Google Scholar
  61. 61.
    Seiler, W. 1984. Contribution of biological processes to the global budget of CH4 in the atmosphere. In M.J. Klug and C.A. Reddy (eds.), Current Perspectives in Microbial Ecology, American Society for Microbiology, Washington DC, pp. 468–477.Google Scholar
  62. 62.
    Seiler, W., A. Holzapfel-Pschorn, R. Conrad, and D. Scharffe. 1984. Methane emission from rice paddies. J. Atmos. Chem. 1:241–268.CrossRefGoogle Scholar
  63. 63.
    Steele, L.P., P.J. Fraser, R.A. Rasmussen, M.A.K. Khalil, T.J. Conway, A.J. Crawford, R.H. Gammon, K.A. Masarie, and K.W. Thoning. 1987. The global distribution of methane in the troposphere. J. Atmos. Chem. 5:125–171.CrossRefGoogle Scholar
  64. 64.
    Stirling, D.I., and H. Dalton. 1979. The fortuitous oxidation and cometabolism of various carbon compounds by whole-cell suspensions of Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 5:315–318.CrossRefGoogle Scholar
  65. 65.
    Stumm, W. 1984. Interpretation and measurement of redox intensity in natural waters. Schweiz. Z. Hydrol. 46:291–296.Google Scholar
  66. 66.
    Thebrath, B., H.P. Mayer, and R. Conrad. 1992. Bicarbonate-dependent production and methanogenic consumption of acetate in anoxic paddy soil. FEMS Microbiol. Ecol. 86:295–302.CrossRefGoogle Scholar
  67. 67.
    Trolldenier, G. 1987. Estimation of associative nitrogen fixation in relation to water regime and plant nutrition in a long-term pot experiment with rice (Oryza sativa L.). Biol. Fertil. Soils 5:133–140.CrossRefGoogle Scholar
  68. 68.
    Tyler, S.C., P.R. Zimmerman, C. Cumberbatch, J.P. Greenberg, C. Westberg, and J.P.E.C. Darlington. 1988. Measurements and interpretation of 813C of methane from termites, rice paddies and wetlands in Kenya. Global Biogeochem. Cycles 2:341–355.CrossRefGoogle Scholar
  69. 69.
    Ueckert, J., T. Hurek, I. Fendrik, and E.G. Niemann. 1990. Radial gas diffusion from roots of rice (Oryza sativa L.) and Kallar grass (Leptochloa fusca L. Knuth), and effects of inoculation with Azospirillum brasilense Cd. Plant and Soil 122: 59–65.CrossRefGoogle Scholar
  70. 70.
    Ueckert, J., E.G. Niemann, and I. Fendrik. 1990. Leakage of gases from inoculated and sterile grass roots. Symbiosis 9:125–128.Google Scholar
  71. 71.
    Unden, G., M. Trageser, and A. Duchene. 1990. Effects of positive redox potentials (>+400 mV) on the expression of anaerobic respiratory enzymes in Escherichia coll. Molec. Microbiol. 4:315–319.CrossRefGoogle Scholar
  72. 72.
    Uzaki, M., H. Mizutani, and E. Wada. 1991. Carbon isotope composition of CH4 from rice paddies in Japan. Biogeochemistry 13:159–175.CrossRefGoogle Scholar
  73. 73.
    Wahlen, M., N. Tanaka, R. Henry, B. Deck, J. Zeglen, J.S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, and W. Broecker. 1989. Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon. Science 245:286–290.CrossRefGoogle Scholar
  74. 74.
    Ward, B.B. 1987. Kinetic studies on ammonia and methane oxidation by Nitroso-coccus oceanus. Arch. Microbiol. 147:126–133.Google Scholar
  75. 75.
    Watanabe, I. 1986. Nitrogen fixation by non-legumes in tropical agriculture with special reference to wetland rice. Plant and Soil 90:343–357.CrossRefGoogle Scholar
  76. 76.
    Whiticar, M.J., E. Faber, and M. Schoell. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotopic evidence. Geochim. Cosmochim. Acta 50:693–709.CrossRefGoogle Scholar
  77. 77.
    Whiticar, M.J., E. Faber, and M. Schoell. 1990. A geochemical perspective of natural gas and atmospheric methane. Org. Geochem. 16:531–547.CrossRefGoogle Scholar
  78. 78.
    Yagi, K., and K. Minami. 1990. Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36:599–610.CrossRefGoogle Scholar
  79. 79.
    Yamane, I., and K. Sato. 1963. Decomposition of organic acids and gas formation in flooded soil. Soil Sci. Plant Nutr. 9:32–36.CrossRefGoogle Scholar
  80. 80.
    Yamane, I., and K. Sato. 1964. Decomposition of glucose and gas formation in flooded soil. Soil Sci. Plant Nutr. 10:35–41.CrossRefGoogle Scholar
  81. 81.
    Yamane, I. and K. Sato. 1967. Effect of temperature on the decomposition of organic substances in flooded soil. Soil Sci. Plant Nutr. 13:94–100.CrossRefGoogle Scholar
  82. 82.
    Zehnder, A.J.B., and T.D. Brock. 1979. Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 137:420–432.Google Scholar
  83. 83.
    Zehnder, A.J.B., and T.D. Brock. 1980. Anaerobic methane oxidation: occurrence and ecology. Appl. Environ. Microbiol. 39:194–204.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Ralf Conrad
    • 1
  1. 1.Max-Planck-Institut für Terrestrische MikrobiologieMarburg/LahnGermany

Personalised recommendations