Advertisement

Nonisospectral Symmetries of the KdV Equation and the Corresponding Symmetries of the Whitham Equations

  • P. G. Grinevich
Part of the NATO ASI Series book series (NSSB, volume 320)

Abstract

In our paper we construct a new infinite family of symmetries of the Whitham equations (averaged Korteveg-de-Vries equation). In contrast with the ordinary hydrodynamic-type flows these symmetries are nonhomogeneous (i.e. they act nontrivially at the constant solutions), are nonlocal, explicitly depend upon space and time coordinates and form a noncommutative algebra, isomorphic to the algebra of the polynomial vector fields in the plain.

Keywords

Modulus Space Riemann Surface Branch Point Marked Point Riemann Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.B. Whitham. Linear and nonlinear waves. N.Y., Wiley, (1974).zbMATHGoogle Scholar
  2. 2.
    H. Flaschka, G. Forest, D.W. MkLaughlin. Commun. Pure Appl. Math. 33, no.6 (1980).Google Scholar
  3. 3.
    Peter D.Lax, C.David Levermore. Commun. Pure Appl. Math., 36, pp.253–290, 571–593, 809–830 (1983).Google Scholar
  4. 4.
    B.A. Dubrovin, S.P. Novikov. Sov. Math. Doklady 27, p.665 (1983); Russian Math. Surveys 44:6 (1989), p.35.Google Scholar
  5. 5.
    S.P. Tzarev. Math. USSR Izvestiya, 54, no. 5 (1990).Google Scholar
  6. 6.
    B.A. Dubrovin. Hamiltonian formalism of Whitham-type hierarchies and topological Landau-Ginzburg models. Preprint 1991.Google Scholar
  7. 7.
    S.P. Tzarev. Soviet. Math. Dokl. 31, pp.488–491 (1985).Google Scholar
  8. 8.
    I.M. Krichever. Funct. Anal. Appl. 11 (1988), p.15.MathSciNetGoogle Scholar
  9. 9.
    F. Calogero, A. Degasperis. Lett. Nuov. Cim. 22, p.420 (1978).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    V.A. Belinskii, V.E. Zakharov. JETP 12, p.1953 (1978).Google Scholar
  11. 11.
    Maison. Phys. Rev. Lett. 41, p.521 (1978).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    G. Baruccy, T. Redge J. Math. Phys. 18 No 6, p.1149 (1976).ADSCrossRefGoogle Scholar
  13. 13.
    N.H. Ibragimov, A.B. Shabat. Dokl. Akad. Nauk SSSR 244 (1979), p.1.MathSciNetGoogle Scholar
  14. 14.
    H.H. Chen, Y.C. Lee, J.E. Lin. Physica 9D, 9, No 3, pp.439–445 (1983).MathSciNetADSzbMATHGoogle Scholar
  15. 15.
    F.J. Schwarz. J. Phys. Soc. Japan, 51 No 8, p. 2387 (1982).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    B. Fuckssteiner. Progr. Thoer. Phys., 70, pp. 1508–1522 (1983); W. Oevel, B.Fuckssteiner Phys. Lett. 88A, p.323 (1982).Google Scholar
  17. 17.
    A.Yu. Orlov, E.I. Schulman. Additional Symmetries of the Integrable Systems and Conformal Algebra Representations. Preprint IA and E, No 217, Novosibirsk (1984); A.Yu. Orlov, E.I. Schulman. Theor. Math. Phys., 64, pp. 323–327 (1985) (Russian); A.Yu. Orlov, E.I. Schulman. Additional Symmetries for 2-D Integrable Systems. Preprint IA and E, No 277, Novosibirsk (1985); A.Yu. Orlov, E.I. Schulman. Lett. Math. Phys. 12, pp. 171–179 (1986). A.Yu. Orlov in Proceedings Int. Workshop “Plasma theory and …” in Kiev 1987, World Scientific (1988) p.116–134.Google Scholar
  18. 18.
    A.S. Fokas, P.M. Santini. Commun. Math. Phys. 116, p.449 (1088).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    I.M. Krichever, S.P. Novikov. Funct. Anal. i Prilog. 21, No 2, pp. 46–63 (1987); 21, No 4, pp. 47–61 (1987); 23, No 1, pp. 41–56 (1989).Google Scholar
  20. 20.
    P.G. Grinevich, A.Yu. Orlov. Virasoro action on Riemann surfaces, Grassmannians, det ā j and Segal-Vilson т function. in “Probimes of modern quantum field theory”, ed. A.A. Belavin, A.U. Klimyk, A.B. Zamolodchikov, Springer 1989.Google Scholar
  21. 21.
    P.G. Grinevich, A.Yu. Orlov. Funct. Anal. Appl. 24 no. 1, (1990); Higher symmetries of KP equation and the Virasoro action on Riemann surfaces. in “Nonlinear evolution equations and dynamical systems”, ed. S. Carillo, O. Ragnisco, Springer 1990.Google Scholar
  22. 22.
    A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov. Nuclear Phys. B 357, pp. 565–618 (1991).MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    I.M. Krichever. “The dispersionless Lax equations and topological minimal models”. Preprint 1991 Torino; Lecture at the Sakharov memory congress (1991).Google Scholar
  24. 24.
    G. Springer. Introduction to Riemann surfaces. Addison - Wesley Publishing Company, Inc. Reading, Massachusetts, USA (1957).zbMATHGoogle Scholar
  25. 25.
    M. Shiffer, D.K. Spencer. Functionals of finite Riemann surfaces. Princeton, New Jersey (1953).Google Scholar
  26. 26.
    D. Mumford. Tata lectures on Theta. Birkhäuser, Boston - Basel - Stuttgart (1983).Google Scholar
  27. 27.
    R. Dijkgraaf, H. Verlinder, E. Verlinder. “Topological strings in d < 1”. Princeton preprint PUPT - 1024, IASSNS-HEP - 90/71.Google Scholar
  28. 28.
    V.E. Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaevsky. Soliton theory. Plenum, New York, 1984.Google Scholar
  29. 29.
    I.M. Krichever. Docl. Akad. Nauk. SSSR, 227, No 2, pp. 291–294 (1977).Google Scholar
  30. 30.
    I.M. Krichever. Uspekhy. Mat. Nauk. 44, No 2, pp. 121–184 (1989).MathSciNetGoogle Scholar
  31. 31.
    I.M. Gel’fand, L.A. Dikii. Funct. Anal. Pril. 10, No 4, pp. 13–29 (1976).MathSciNetzbMATHGoogle Scholar
  32. 32.
    H. McKean, E. Trubowitz. Commun Pure. Appl. Math. 29, pp. 143–226 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    B.A. Dubrovin. Uspekhi. Math. Nauk. 36, No 2, pp. 11–40 (1981).MathSciNetGoogle Scholar
  34. 34.
    N. Kawamoto, Yu. Namikava, A. Tsuchiya, Ya. Yamada. Commun. Math. Phys. 116, No. 2, pp.247–308 (1988).ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • P. G. Grinevich
    • 1
  1. 1.L.D.Landau Institute for Theoretical PhysicsMoscowUSSR

Personalised recommendations