Advertisement

Surfactant Replacement Therapy in Animal Models of Respiratory Failure Due to Viral Infection

  • A. van’t Veen
  • K. L. So
  • B. Lachmann
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 345)

Abstract

Several studies have shown that during the development of respiratory failure in the adult respiratory distress syndrome (ARDS), the pulmonary surfactant system is disturbed1–5. One of the current promising therapeutic approaches in ARDS is, therefore, re-establishment of the functional integrity of the damaged surfactant system by intratracheal instillation of surfactant. The first clinical trials6,7 and results from experimental studies on ARDS have shown that exogenous surfactant application can restore lung function in ARDS (for review see references 8 and 9). Due to the great variance in etiology of ARDS it is, however, a necessity to investigate surfactant replacement therapy in different models of respiratory failure. Therefore, we studied the effect of surfactant substitution in two animal models of severe respiratory failure due to viral pneumonia.

Keywords

Adult Respiratory Distress Syndrome Surfactant System Lung Mechanic Sendai Virus Viral Pneumonia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Hallman, R. Spragg, J.H. Harrel, K.M. Moser and L. Gluck, Evidence of lung surfactant abnormality in respiratory failure, J. Clin. Invest. 70:673(1982)PubMedCrossRefGoogle Scholar
  2. 2.
    W. Seeger, U. Pison and R. Buchhorn, Alterations in alveolar surfactant following severe multiple trauma, in: “Basic research on lung surfactant,” P. Von Wichert, ed., Prog. Respir. Dis., Basel (1990)Google Scholar
  3. 3.
    P. Von Wichert, P.V. Kohl, Decreased dipalmitoyl lecithin content found in lung specimens from patients with so-called shock-lung, Intensive Care Med. 3:27(1977)PubMedCrossRefGoogle Scholar
  4. 4.
    T.L. Petty, G.W. Silvers, G.W. Paul and R.E. Stanford, Abnormalities in lung elastic properties and surfactant function in adult respiratory distress syndrome,Chest. 75:571(1979)PubMedCrossRefGoogle Scholar
  5. 5.
    B. Lachmann and E. Danzmann, Adult respiratory distress syndrome,in: “Pulmonary surfactant,” B. Robertson, ed.,Elsevier, Amsterdam(1984)Google Scholar
  6. 6.
    B. Lachmann, The role of pulmonary surfactant in the pathogenesis and therapy of ARDS,in: “Update in intensive care and emergency medicine,” J.L. Vincent,ed.,Springer-verslag, Berlin(1987)Google Scholar
  7. 7.
    P.S. Richman, R.G. Spragg, B. Robertson, T.A. Merrit and T. Curstedt, The adult respiratory distress syndrome: first trials with surfactant replacement, Eur. Respir. J. 2:109S(1989)Google Scholar
  8. 8.
    B.A. Holm and S. Matalon, Role of pulmonary surfactant in the development and treatment of adult respiratory distress syndrome, Anesth. Analg. 69:805(1989)PubMedCrossRefGoogle Scholar
  9. 9.
    B. Lachmann, Surfactant replacement, Appl. Cardiopubn. Physiol. 3:3(1989)Google Scholar
  10. 10.
    H. Herzog, H. Staub and R. Richterich, Ga-analytical studies in severe pneumonia. Observations during the 1957 influenza epidemic, Lancet. i:593(1959)CrossRefGoogle Scholar
  11. 11.
    D.B. Louria, H.L. Blumenfeld, J.T. Ellis, E.D. Kilbourn and D.E. Rogers, Studies on influenza in the pandemic of 1957–58. II Pulmonary complications of influenza, J. Clin. Invest. 38:213(1959)PubMedCrossRefGoogle Scholar
  12. 12.
    G.J. van Daal, E.P. Eijking, K.L. So and B. Lachmann, Acute respiratory failure during pneumonia induced by Sendai virus, Adv. Exp. Med. Biol. (in press) Google Scholar
  13. 13.
    B. Lachmann, P. Berggren, T. Curstedt, G. Grossmann and B. Robertson, Combined effects of surfactant substitution and prolongation of inspiratory phase in artificially ventilated premature newborn rabbits, Pediatr. Res. 16:921(1982)PubMedCrossRefGoogle Scholar
  14. 14.
    G.J. van Daal, J.A.H. Bos, E.P. Eijking, D. Gommers E. Hannappel and B. Lachmann, Surfactant replacement therapy improves pulmonary mechanics in end-stage influenza A pneumonia in mice, Am. Rev. Respir. Dis. 145:859(1992)PubMedGoogle Scholar
  15. 15.
    B.T. Peterson, J.A. Brooks and A.G. Zack, Use of microwave oven for determination of postmortem water volume of lungs, J. Appl. Physiol. 49:34(1982) Google Scholar
  16. 16.
    I.L. Metcalfe, G. Enhorning, F. Possmayer, Pulmonary surfactant-associated proteins: their role in the expression of surface activity, J. Appl. Physiol. 49:34(1980)PubMedGoogle Scholar
  17. 17.
    J.A. Clements, Function of the alveolar lining, Am. Rev. Respir. Dis. 115:S67(1977)Google Scholar
  18. 18.
    J. Goerke, Lung surfactant, Biocheni. Biophys. Acta. 344:241(1974)CrossRefGoogle Scholar
  19. 19.
    B.A. Holm, S. Matalon and R.H. Notter, Pulmonary surfactant effects and replacements in oxygen toxicity and other ARDS-type lung injuries, in: “Surfactant replacement therapy in neonatal and adult respiratory distress syndrome,” B. Lachmann, ed. Springer-Verlag, Berlin Heidelberg(1988)Google Scholar
  20. 20.
    B. Lachmann, Surfactant replacement therapy in neonatal and respiratory distress syndrome, in: “Surfactant replacement therapy in neonatal and adult respiratory distress syndrome,” B. Lachmann, ed. Springer-Verlag, Berlin Heidelberg(1988)Google Scholar
  21. 21.
    J.A. Clements, Pulmonary edema and permeability of alveolar membranes, Arch. Environ. Health. 104(1961)Google Scholar
  22. 22.
    R.K. Albert, S. Lakshminarayan, J. Hildebrandt, W. Kirk, and J. Butler, Increased surface tension favors pulmonary edema formation in anesthetized dogs’ lungs, J. Clin. Invest. 63:1015(1979)PubMedCrossRefGoogle Scholar
  23. 23.
    G.F. Nieman and C.E. Bredenberg, Pulmonary edema induced by high alveolar surface tension, Prog. Respir. Res. 18:204(1984) Google Scholar
  24. 24.
    C. Sweet and H. Smith, Pathogenicity of influenza virus, Microbiol. Rev. 44:303(1980)PubMedGoogle Scholar
  25. 25.
    D.G. Brownstein, Sendai virus infection, lung, mouse and rat, in: “Monographs on pathology of laboratory animals,” T.C. Jones, ed., International Life Sciences Institute, Washington D.C.(1985)Google Scholar
  26. 26.
    S.F. Stinson, D.P. Ryan, M.S. Hertweck, J.D. Hardy, S.Y. Hwang-Kow and CG Loosli, Epithelial and surfactant changes in influenza pulmonary lesions, Arch. Pathol. Lab. Med. 100:147(1976)PubMedGoogle Scholar
  27. 27.
    F.B. Taylor and M.E. Abrams, Effects of surface active lipoprotein on clotting and fibrinolysis and of fibrinogen on surface tension of surface active lipoprotein, Am. J. Med. 40:346(1966)CrossRefGoogle Scholar
  28. 28.
    M. Ikegami, A. Jobe, H. Jacobs and R. Lam, A protein from airways of premature lambs that inhibits surfactant function, J. Appl. Physiol. 57:1134(1984)PubMedGoogle Scholar
  29. 29.
    B.A. Holm, R.H. Notter and J.N. Finkelstein, Surface property changes from interactions of albumine with natural lung surfactant and extracted lung lipids, Chem. Phys. Lipids. 38:287(1985)PubMedCrossRefGoogle Scholar
  30. 30.
    W. Seeger, G. Stohr, H.R. Wolf and H. Neuhof, Alteration of surfactant function due to protein leakage: special interaction with fibrin monomer, J. AppL Physiol. 58:326(1985) PubMedGoogle Scholar
  31. 31.
    B.A. Holm, G.E. Enhorning and R.H. Notter, A biophysical mechanism by which plasma proteins inhibit surfactant activity, Chen. Phys. Lipids. 49:49(1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • A. van’t Veen
    • 1
  • K. L. So
    • 1
  • B. Lachmann
    • 1
  1. 1.Dept. of AnaesthesiologyErasmus University RotterdamThe Netherlands

Personalised recommendations