Minimum-Fuel Transfer between Coplanar Elliptic Orbits - Global Results Using Green’s Theorem

  • Kenneth D. Mease
  • Anil V. Rao


The use of Green’s theorem to determine the minimum-fuel transfer between coplanar elliptic orbits in the time-free, orientation-free case is reviewed and extended to the consideration of aeroassisted transfers. In addition to the two-impulse Hohmann transfer, there are many other transfers between a given pair of elliptic orbits that satisfy the local optimality conditions. Green’s theorem offers a straightforward and effective means of proving that most of these transfers cannot be globally optimal. Using Green’s theorem, it is shown that the minimum-fuel aeroassisted transfer belongs to one of two one-parameter families of transfers. Direct numerical comparison of the fuel consumption is used to determine the optimal value of the parameter for each family. There remains a best aeroelliptic transfer and a best aero-parabolic transfer which must be compared with the Hohmann and bi-parabolic all-propulsive transfers to determine the minimum-fuel transfer for each pair of initial and final elliptic orbits.


Fuel Consumption Characteristic Velocity Elliptic Orbit Optimal Transfer Orbital Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.B. Barrar, “An Analytic Proof That the Hohmann-type Transfer is the True Minimum Two-Impulse Transfer,” Astronautica Acta 9 (1): 1 (1963).MathSciNetGoogle Scholar
  2. 2.
    R.H. Baffin, “An Introduction to the Mathematics and Methods of Astrodynamics,” AIAA Education Series, AIAA, New York (1987).Google Scholar
  3. 3.
    J.V. Breakwell, “Minimum Impulse Transfer,” AIAA Paper 63–416 (1963).Google Scholar
  4. 4.
    P. Contensou, “Etude Theorique des Trajectories Optimales Dans un Champ de Gravitation. Application au Cas d’un Centre d’Attraction Unique,” Astronautica Acta 9: 134 (1963).MathSciNetGoogle Scholar
  5. 5.
    T.N. Edelbaum, “Some Extensions of the Hohmann Transfer Maneuver,” ARS Journal 29 (11): 864 (1959).Google Scholar
  6. 6.
    F.W. Gobetz and J.R. Doll, “A Survey of Impulsive Trajectories,” AIAA Journal 5 (7): 801 (1969).Google Scholar
  7. 7.
    G.A. Hazelrigg Jr., “Globally Optimal Impulsive Transfers via Green’s Theorem,” Journal of Guidance, Control, and Dynamics 7 (4): 462 (1984).zbMATHCrossRefGoogle Scholar
  8. 8.
    W. Hohmann, “Die Erreichbarkeit der Himmelskorper,” Oldenbourg, Munich 1925; also, NASA Translation TT-F-44 (1960).Google Scholar
  9. 9.
    R.E. Hoelker and R. Silber, “The Bi-Elliptic Transfer Between Circular Coplanar Orbits,” Department of the Army, Army Ballistic Missile Agency, Redstone Arsenal, Ala., Technical Memo 2–59 (1959).Google Scholar
  10. 10.
    D.F. Lawden, “Optimal Trajectories for Space Navigation,” Butterworths, London (1963).Google Scholar
  11. 11.
    K.D. Mease and N.X. Vinh, “Minimum-Fuel Aeroassisted Coplanar Orbit Transfer,” Journal of Guidance, Control, and Dynamics 8 (1): 134 (1985).CrossRefGoogle Scholar
  12. 12.
    K.D. Mease, “Optimization of Aeroassisted Orbital Transfer: Current Status,” Journal of the Astronautical Sciences 36 (1/2): 7 (1988).Google Scholar
  13. 13.
    J.P. Marec, “Optimal Space Trajectories,” Elsevier, Paris (1979).Google Scholar
  14. 14.
    A. Miele, “Problems of Minimum Time in the Nonsteady Flight of Aircraft,” Atti della Acaademia delle Scienze di Torino, Classe di Scienze Fisiche, Matematiche e Naturali 85: 41 (1950–51) (in Italian).Google Scholar
  15. 15.
    A. Miele, “Extremization of Linear Integrals by Green’s Theorem,” in: Optimization Techniques G. Leitmann, ed., Academic Press, New York (1962).Google Scholar
  16. 16.
    A. Miele and P. V. Venkataraman, “Optimal Trajectories for Aeroassisted Transfer,” Acta Astronautica 11 (7–8): 423 (1984).zbMATHCrossRefGoogle Scholar
  17. 17.
    A. Miele, V.K. Basapur, and W.Y. Lee, “Optimal Trajectories for Aeroassisted, Coplanar Orbital Transfer,” Journal of Optimization Theory and Applications 52 (1): 1 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    A. Miele, V.K. Basapur, and W.Y. Lee, “Optimal Trajectories for Aeroassisted, Noncoplanar Orbital Transfer, Part I,” Acta Astronautica 15 (6/7): 399 (1987).zbMATHCrossRefGoogle Scholar
  19. 19.
    H.G. Moyer, “Minimum Impulse Coplanar Circle to Ellipse Transfers,” AIAA Journal 3 (4): 723 (1965).CrossRefGoogle Scholar
  20. 20.
    J.I. Palmore, “An Elementary Proof of the Optimality of Hohmann Transfers,” Journal of Guidance, Control, and Dynamics 7 (5): 629 (1984).CrossRefGoogle Scholar
  21. 21.
    J.E. Prussing, “A Simple Proof of the Global Optimality of the Hohmann Transfer,” Journal of Guidance, Control, and Dynamics 15 (4): 1037 (1992).MathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Shternfeld, “Soviet Space Science,” Basic Books, Inc., New York (1959).Google Scholar
  23. 23.
    L. Ting„ “Optimum Orbital Transfer by Impulse,” ARS Journal 30 (11): 1013 (1960).zbMATHCrossRefGoogle Scholar
  24. 24.
    N.X. Vinh and C. Marchal, “Analytical Solutions of a Class of Optimum Orbit Modifications,” Journal of Optimization Theory and Applications 5 (3): 178 (1970).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Kenneth D. Mease
    • 1
  • Anil V. Rao
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations