The Cell Cycle pp 291-299 | Cite as

Apoptosis: Definition, Roles and Regulation

  • L. E. Gerschenson
  • R. J. Rotello
  • R. Lieberman
  • C.-I. Sze
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


The emergence of molecular biology, with the possibility of cloning genes and introducing them in cells where they are expressed, has challenged the classic concept of cell death. But that concept is still valid when defined as “a state in which cells are totally incapable of any function ... ”.1 That concept has been based mostly on morphological observation.


Programme Cell Death Uterine Epithelium Progesterone Serum Level Progesterone Withdrawal Term Programme Cell Death 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.G. Scarpelli and M. Chiga. Cell injury and errors of metabolism, in: “Pathology,” W.A.D. Anderson and J.M. Kissane, eds., The C. V. Mosby Co., St. Louis, Missouri (1974).Google Scholar
  2. 2.
    B. F. Trump, I.K. Berezesky and A.R. Osornio-Vargas. The role of calcium, in: “Cell Death in Biology and Pathology,” I.D. Bowen and R.A. Lockshin, eds., Chapman and Hall Ltd., London, England (1981).Google Scholar
  3. 3.
    L.E. Gerschenson and R.J. Rotello. Apoptosis: a different type of cell death, FASEB J 6: 2450 (1992).PubMedGoogle Scholar
  4. 4.
    R.A. Lockshin. Cell death in metamorphosis, in: “Cell Death in Biology and Pathology,” I.D. Bowen and R.A. Lockshin, eds., Chapman and Hall Ltd., London, England (1981).Google Scholar
  5. 5.
    A.H. Wyllie, R.G. Morris, A.L. Smith, and D. Dunlop. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis, J. Pathpl. 142: 67 (1984).CrossRefGoogle Scholar
  6. 6.
    J.J. Cohen and R.C. Duke. Glucocorticoid activation of a calcium-dependent endo-nuclease in thymocyte nuclei leads to cell death, J. Immunol. 132: 38 (1984).PubMedGoogle Scholar
  7. 7.
    A. Alles, K. Alley, J.C. Barrett, R. Buttyan, J.A. Columbano, F.O. Cope, E.A. Copelan, R.C. Duke, P.B. Farel, L.E. Gerschenson, D. Goldgaber, D.R. Green, K.V. Honn, J. Hully, J.T. Isaacs, J.F.R. Kerr, P.H. Krammer, R.A. Lockshin, D.P. Martin, D.J. McConkey, J. Michaelson, R. Schulte-Hermann, A.C. Server, B. Szende, L.D. Tomei, T.R. Tritton, S.R. Umansky, K. Valerie, H.R. Warner. Apoptosis: a general comment. FASEB J. 5, 2127 (1991).PubMedGoogle Scholar
  8. 8.
    S. Nawaz, M.P. Lynch, P. Galand and L.E. Gerschenson. Hormonal regulation of cell death in rabbit uterine epithelium. Am. J. Pathpl. 127: 51 (1987).Google Scholar
  9. 9.
    R.J. Rotello, M.B. Hocker and L.E. Gerschenson. Biochemical evidence for programmed cell death in rabbit uterine epithelium. Am. J. Pathpl. 134: 491 (1989).Google Scholar
  10. 10.
    R.J. Rotello, R.C. Lieberman, R.B. Lepoff and L.E. Gerschenson. Characterization of uterine, epithelium apoptotic cell death kinetics and regulation by progesterone and RU486. Am. J. Pathpl. 140: 449 (1991).Google Scholar
  11. 11.
    M.A. Barry and A. Eastman, Endonuclease activation during apoptosis: the role of cytosolic CC md pH. Bipchem. Bipµhys. Res. Conimun. 186: 782 (1992).CrossRefGoogle Scholar
  12. 12.
    M.A. Barry, J.E. Reynolds and A. Eastman. Etoposide-induced apoptosis in human HL-60 cells is associated with intracellular acidification. Cancer Res. 53: 2349 (1993).PubMedGoogle Scholar
  13. 13.
    L.D. Tomei, J.P. Shapiro and F.O. Cope. Apoptosis in C3H/1071/2 mouse embryonic cells: evidence for internucleosomal DNA modification in the absence of double-strand cleavage. Pmc. Natl. Acad. Sci. USA 90: 853 (1993).CrossRefGoogle Scholar
  14. 14.
    F. Oberhammer, G. Fritsch, M. Schmied, M. Pavelka, D. Printz, T. Purchio, H. Lassmann and R. Schulte-Hermmn. Condensation of the chromatin at the membrane of an apoptotic nucleus is not associated with activation of an endonuclease. J. Cell Sci. 104: 317 (1993).PubMedGoogle Scholar
  15. 15.
    H.M. Ellis and H.R. Horvitz. Genetic control of programmed cell death in the nematode C. elegans. Cell 44: 817 (1986).Google Scholar
  16. 16.
    J. Yuan and H.R. Horvitz. The Caefnnhabditis elegans genes ced-3 and ced-4 act autonomously to cause programmed cell death. Dev. Biol. 138: 33 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    D.L. Vaux, I.L. Weissman and S.K. Kim. Prevention of programmed cell death in C. elegans by human bd-2. Science 258: 1955 (1992).PubMedCrossRefGoogle Scholar
  18. 18.
    J.F.R. Kerr and J. Searle. Deletion of cells by apoptosis during castration-induced involution of the rat prostate. Virchows Arch. Zellpathol. 13: 87 (1973).Google Scholar
  19. 19.
    B. Lesser and N. Bruchovsky. The effects of testosterone, 5-a-dihydrotestosterone and adenosine 3′, 5′-monophosphate on cell proliferation and differentiation in rat prostate. Biochem. Biophys. Acta 308: 426 (1973).PubMedCrossRefGoogle Scholar
  20. 20.
    C. Chang, A.G. Saltzman, N.S. Sorensen, R.A. Hüpakka and S. Liao. Identification of glutathione S-transferase Ybi mRNA as the androgen-repressed mRNA by cDNA cloning and sequence analysis. J. Biol. Chem. 262: 11901 (1987).PubMedGoogle Scholar
  21. 21.
    M.L. Montpetit, K.R. Lawless and M.P. Tenniswood. Androgen-repressed messages in the rat ventral prostate. Prostate 8: 25 (1987).CrossRefGoogle Scholar
  22. 22.
    R. Buttyan, Z. Zakeri, R. Lockshin and D. Wolgemuth. Cascade induction of c-fos, c-myc and heat shock 70K transcripts during regression of the rat ventral prostate gland. Mol. Endocrinol. 2: 650 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    A.E. Katz, M.C. Benson, G.J. Wise, C.A. Olsson, M.G. Bandyk, I.S. Sawczuk, P. Tomashefsky and R. Buttyan. Gene activity during the early phase of androgen-stimulated rat prostate regrowth. Cancer Res. 49: 5889 (1989).PubMedGoogle Scholar
  24. 24.
    G. Engel, C. Lee and J.T. Grayhock. Acid ribonuclease in rat prostate during castration-induced involution. Biol. Repmd. 22: 827 (1980).CrossRefGoogle Scholar
  25. 25.
    C.I. Evan, A.H. Wyllie, C.S. Gilbert, T.D. Littlewood, H. Land, M. Brooks, C.M. Waters, L.Z. Penn, D.C. Hancock. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    A.J. Wagner, M.B. Small and N. Hay. Myc-mediated apoptosis is blocked by ectopie expression of bel-2. Mol. Cell. Biol. 13: 2432 (1993).PubMedGoogle Scholar
  27. 27.
    A. Fanidy, E.A. Harrington and G.I. Evan. Cooperative interaction between c-myc and bel-2 proto-oncogenes. Nature 359: 554 (1992).CrossRefGoogle Scholar
  28. 28.
    R.P. Bissonette, F. Echeverri, A. Mahboubiand D. R. Green. Apoptotic cell death induced by c-myc is inhibited by bel-2. Nature 359: 552 (1992).CrossRefGoogle Scholar
  29. 29.
    D.S. Askew, R.A. Ashmun, B.C. Simmons and J.L. Cleveland. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogen 6: 1915 (1991).Google Scholar
  30. 30.
    J. Lotem and L. Sachs. Regulation by bel-2, c-myc and p53 of susceptibility to induction of apoptosis by heat shock and cancer chemotherapy compounds in differentiation-competent and defective myeloid leukemic cells. Cell Growth Differ. 4: 41 (1993).PubMedGoogle Scholar
  31. 31.
    E. Yonish-Rouach, D. Grumwald, S. Wilder, A. Kimchi, E. May, J.J. Lawrence, P. May and M. Oren. p53-mediated cell death: relationship to cell cycle control. Mol. Cell. Biol. 13: 1415 (1993).PubMedGoogle Scholar
  32. 32.
    P. Shaw, R. Bogey, S. Tardy, R. Sahli, B. Sordat and J. Costa. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Scl. USA 89: 4495 (1992).CrossRefGoogle Scholar
  33. 33.
    M. Fritsche, C. Haessler and G. Brandner. Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogen 8: 307 (1993).Google Scholar
  34. 34.
    M. Debbas and E. White. Wild-type p53 mediates apoptosis by EIA, which is inhibited by EIB. Genes Dev. 7: 546 (1993).PubMedCrossRefGoogle Scholar
  35. 35.
    S.W. Lowe and H.E. Ruley. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 EIA and accompanies apoptosis. Genes Dev. 7: 535 (1993).PubMedCrossRefGoogle Scholar
  36. 36.
    S.W. Lowe, E.M. Schmitt, S.W. Smith, B.A. Osborne and T. Jacks. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847 (1993).Google Scholar
  37. 37.
    A.R. Clarke, C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper and A.H. Wyllie. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849 (1993).PubMedCrossRefGoogle Scholar
  38. 38.
    S.M. Lester, J.G. Wood, and L.R. Gooding. Tumor necrosis factor can induce both apoptotic and necrotic forms of cell lysis. J. Immunol. 141: 2629 (1993).Google Scholar
  39. 39.
    H.L. Moses, E.Y. Yang and J.S. Pietenpol. TGF-(3 stimulation and inhibition of cell proliferation: New mechanistic insights. Cell 63: 245 (1990).PubMedCrossRefGoogle Scholar
  40. 40.
    R.J. Rotello, R.C. Lieberman, A.F. Purchio, and L.E. Gerschenson. Coordinated regulation of apoptosis and cell proliferation by TGF-(31 in cultured cells. Proc. Natl. A cad. Sci. USA 88: 3412 (1991).CrossRefGoogle Scholar
  41. 41.
    K. Yanagihara and M. Tsumuraya. Transforming Growth Factor ßl induces apoptotic cell death in cultured human gastric carcinoma cells. Cancer Res. 52: 4042 (1992).PubMedGoogle Scholar
  42. 42.
    J. Lotem and L. Sachs. Hematopoietic cytokines inhibit apoptosis induced by Transforming Growth Factor 01 and cancer chemotherapy compounds in myeloid leukemic cells. Blood 80: 1750 (1992).PubMedGoogle Scholar
  43. 43.
    C.-I Sze, W. Sun, R. Lieberman, T. Purchio and L.E. Gerschenson. Progesterone regulates apoptosis, Transforming Growth Factor-ßl (TGF-ßl) immunostain patterns and TGF-31 mRNA content in rabbit uterine epithelium. FASEB J. 7: A137 (1993).Google Scholar
  44. 44.
    L.E. Gerschenson, R.J. Rotello, R. Low, R. Lieberman, J. Rochon and A.F. Purchio. Apoptosis (programmed cell death) regulation in rabbit uterine epithelium. FA SEB J. 5: A518 (1991).Google Scholar
  45. 45.
    M. Lynch, S. Nawan, and L.E. Gerschenson. Evidence for soluble factors regulating cell death and cell proliferation in primary cultures of rabbit endometrial cells grown on collagen. Proc. Natl. Acad. Sci. USA 83: 4784 (1986).PubMedCrossRefGoogle Scholar
  46. 46.
    L.E. Gerschenson and R.J. Rotello. Apoptosis and cell proliferation are terms of the growth equation, in “Apoptosis: The Molecular Basis of Cell Death,” L.D. Tomei and F.O. Cope, eds., Cold Spring Harbor Laboratory Press, Plainview, New York (1991).Google Scholar
  47. 47.
    J.T. Murai, C.J. Conti, I. Gimenez-Conti, D. Orlicky and L.E. Gerschenson. Temporal relationship between rabbit uterine epithelium proliferation and uteroglobin production. Biol. Reprod. 24: 649 (1981).PubMedCrossRefGoogle Scholar
  48. 48.
    C.J. Conti, I. Gimenez-Conti, E.A. Conner, J.M. Lehman and L.E. Gerschenson. Estrogen and progesterone regulation of proliferation, migration and loss of different target cells of rabbit uterine epithelium. Endocrinology 114: 345 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • L. E. Gerschenson
    • 1
  • R. J. Rotello
    • 1
  • R. Lieberman
    • 1
  • C.-I. Sze
    • 1
  1. 1.Department of PathologyUniversity of Colorado School of MedicineDenverUSA

Personalised recommendations