Signals for Protein Targeting into and across Membranes

  • Gunnar von Heijne
Part of the Subcellular Biochemistry book series (SCBI, volume 22)


How can a newly synthesized protein navigate its way through the maze of organelles found inside a cell to reach its intended destination? This basic question has fascinated workers in cell and molecular biology for a long time; yet, we still do not have all the final answers. Some principles are clear, however. The targeting information is encoded within the nascent protein itself in the form of distinct “signals,” either in the form of stretches of amino acids or as surface patches made from discontinuous parts of the protein. These signals are recognized by receptors, which guide the protein to import machineries located in the appropriate organelle. The biochemistry of the various import pathways is covered in other chapters in this book; this chapter presents an overview of the sorting signals themselves, their sequences and structures, and possible modes of function.


Signal Peptide Charge Amino Acid Transit Peptide Intermembrane Space Signal Recognition Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adam, S. A., and Gerace, L., 1991, Cytosolic proteins that specifically bind nuclear location signals are receptort for nuclear import, Cell 66:837–847.PubMedCrossRefGoogle Scholar
  2. Akita, M., Sasaki, S., Matsuyama, S., Mizushima, S., 1990, SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli, J. Biol. Chem. 265:8164–8169.PubMedGoogle Scholar
  3. Anderson, C.M., and Gray, J., 1991, Cleavage of the precursor of pea chloroplast cytochrome-f by leader petidase from Escherichia coli, FEBS Lett. 280:383–386.PubMedCrossRefGoogle Scholar
  4. Andersson, H., Bakker, E., and von Heijne, G., 1992, Different positively charged amino acids have similar effects on the topology of a polytopic transmembrane protein in Escherichia coli, J. Biol. Chem. 267:1491–1495.PubMedGoogle Scholar
  5. Andersson, H., and von Heijne, G., 1991, A 30-residue-long “export initiation domain” adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli, Proc. Natl. Acad. Sci. USA 88:9751–9754.PubMedCrossRefGoogle Scholar
  6. Andrews, D. W., Young, J. C., Mirels, L. R., and Czarnota, G. J., 1992, The role of the N-region in signal sequence and signal-anchor function, J. Biol. Chem. 267:7761–7769.PubMedGoogle Scholar
  7. Bansal, A., and Gierasch, L. M., 1991, The NPXY intenialization signal of the LDL receptor adopts a reverse-turn conformation, Cell 67:1195–1201.PubMedCrossRefGoogle Scholar
  8. Baranski, T. J., Faust, P. L., and Kornfeld, S., 1990, Generation of a lysosomal enzyme targeting signal in the secretory protein pepsinogen, Cell 63:281–291.PubMedCrossRefGoogle Scholar
  9. Baranski, T. J., Koelsch, G., Hartsuck, J. A., and Kornfeld, S., 1991, Mapping and molecular modeling of a recognition domain for lysosomal enzyme targeting, J. Biol. Chem. 266:23365–23372.PubMedGoogle Scholar
  10. Barkocy-Gallagher, G. A., and Bassford, P. J., 1992, Synthesis of precursor maltose-binding protein with proline in the +1 position of the cleavage site interferes with the activity of Escherichia coli signal peptidase-I in vivo, J. Biol Chem. 267:1231–1238.PubMedGoogle Scholar
  11. Bassham, D. C., Bartling, D., Mould, R. M., Dunbar, B., Weisbeek, P., Herrmann, R. G., and Robinson, C., 1991, Transport of proteins into chloroplasts—Delineation of envelope transit and thylakoid transfer signals within the pre-sequences of three imported thylakoid lumen proteins, J. Biol. Chem. 266:23606–23610.PubMedGoogle Scholar
  12. Bauerle, C., Dorl, J., and Keegstra, K., 1991, Kinetic analysis of the transport of thylakoid lumenal proteins in experiments using intact chloroplasts, J. Biol. Chem. 266:5884–5890.PubMedGoogle Scholar
  13. Bauerle, C., and Keegstra, K., 1991, Full-length plastocyanin precursor is translocated across isolated thylakoid membranes, J. Biol. Chem. 266:5876–5883.PubMedGoogle Scholar
  14. Bedwell, D. M., Strobel, S. A., Yun, K., Jongeward, G. D., and Emr, S. D., 1989, Sequence and structural requirements of a mitochondrial protein import signal defined by saturation cassette mutagenesis, Mol. Cell. Biol. 9:1014–1025.PubMedGoogle Scholar
  15. Black, M. T., Munn, J. G. R., and Allsop, A. E., 1992, On the catalytic mechanism of prokaryotic leader peptidase-I, Biochem. J. 282:539–543.PubMedGoogle Scholar
  16. Bonifacino, J. S., Cosson, P., and Klausner, R. D., 1990a, Colocalized transmembrane determinants for ER degradation and subunit assembly explain the intracellular fate of TCR chains, Cell 63:503–513.PubMedCrossRefGoogle Scholar
  17. Bonifacino, J. S., Cosson, P., Shah, N., and Klausner, R. D., 1991, Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endo-plasmic reticulum, EMBO J. 10:2783–2793.PubMedGoogle Scholar
  18. Bonifacino, J. S., Suzuki, C.K., and Klausner, R. D., 1990b, A peptide sequence confers retention and rapid degradation in the endoplasmic reticulum, Science 247:79–82.PubMedCrossRefGoogle Scholar
  19. Boyd, D., and Beckwith, J., 1989, Positively charged amino acid residues can act as topogenic determinants in membrane proteins, Proc. Natl. Acad. Sci. USA 86:9446–9450.PubMedCrossRefGoogle Scholar
  20. Boyd, D., and Beckwith, J., 1990, The role of charged amino acids in the localization of secreted and membrane proteins, Cell 62:1031–1033.PubMedCrossRefGoogle Scholar
  21. Braakman, I., Helenius, J., and Helenius, A., 1992, Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum, Nature 356:260–262.PubMedCrossRefGoogle Scholar
  22. Chou, M. M., and Kendall, D. A., 1990, Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides, J. Biol. Chem. 265:2873–2880.PubMedGoogle Scholar
  23. Colley, K. J., Lee, E. U., and Paulson, J. C., 1992, The signal anchor and stem regions of the β-galactoside α-2,6-sialyltransferase may each act to localize the enzyme to the Golgi apparatus, J. Biol. Chem. 267:7784–7793.PubMedGoogle Scholar
  24. Demel, R. A., Goormaghtigh, E., and deKruijff, B., 1990, Lipid and peptide specificities in signal peptide lipid interactions in model membranes, Biochem. Biophys. Acta 1027:155–162.PubMedCrossRefGoogle Scholar
  25. Desilva, A. M., Balch, W. E., and Helenius, A., 1990, Quality control in the endoplasmic reticulum: Folding and misfolding of vesicular stomatitis virus G-protein in cells and in vitro, J. Cell Biol. 111:857–866.CrossRefGoogle Scholar
  26. Dingwall, C., and Laskey, R. A., 1991, Nuclear targeting sequences: A consensus, Trends Biochem. Sci. 16:478–481.PubMedCrossRefGoogle Scholar
  27. Dreseswerringloer, U., Fischer, K., Wachter, E., Link, T. A., and Flügge, U. I., 1991, cDNA sequence and deduced amino acid sequence of the precursor of the 37-kDa inner envelope membrane Polypeptide from spinach chloroplasts: Its transit peptide contains an amphiphilic α-helix as the only detectable structural element, Eur. J. Biochem. 195:361–368.CrossRefGoogle Scholar
  28. Eberle, W., Sander, C., Klaus, W., Schmidt, B., von Figura, K., and Peters, C., 1991, The essential tyrosine of the internalization signal in lysosomal acid Phosphatase is part of a β-turn, Cell 67:1203–1209.PubMedCrossRefGoogle Scholar
  29. Endo, T., Shimada, I., Roise, D., and Inagaki, F., 1989, N-terminal half of a mitochondrial presequence peptide takes a helical conformation when bound to dodecylphosphocholine micelles: A proton nuclear magnetic resonance study, J. Biochem. 106:396–400.PubMedGoogle Scholar
  30. Erdmann, R., Wiebel, F. F., Flessau, A., Rytka, J., Beyer, A., Frohlich, K. U., and Kunau, W. H., 1991, PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases, Cell 64:499–510.PubMedCrossRefGoogle Scholar
  31. Fikes, J. D., Barkocy-Gallagher, G. A., Klapper, D. G., and Bassford, P. J., 1990, Maturation of Escherichia coli maltose-binding protein by signal peptidase-I in vivo: Sequence requirements for efficient processing and demonstration of an alternate cleavage site, J. Biol. Chem. 265:3417–3423.PubMedGoogle Scholar
  32. Flügge, U. I., Fischer, K., Gross, A., Sebald, W., Lottspeich, F., and Eckerskorn, C., 1989, The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: Nucle-otide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts, EMBO J. 8:39–46.PubMedGoogle Scholar
  33. Flügge, U. I., Weber, A., Fischer, K., Lottspeich, F., Eckerskorn, C., Waegemann, K., and Soll, J., 1991, The major chloroplast envelope Polypeptide is the phosphate translocator and not the protein import receptor, Nature 353:364–367.CrossRefGoogle Scholar
  34. Folz, R. J., Nothwehr, S. F., and Gordon, J. I., 1988, Substrate specificity of eukaryotic signal peptidase, J. Biol. Chem. 263:2070–2078.PubMedGoogle Scholar
  35. Gabathuler, R., and Kvist, S., 1990, The endoplasmic reticulum retention signal of the E3/19K protein of adenovirus type-2 consists of 3 separate amino acid segments at the carboxy terminus, J. Cell Biol. 111:1803–1810.PubMedCrossRefGoogle Scholar
  36. Gavel, Y., Steppuhn, J., Herrmann, R., and von Heijne, G., 1991, The “positive-inside” rule applies to thylakoid membrane proteins, FEBS Lett. 282:41–46.PubMedCrossRefGoogle Scholar
  37. Gavel, Y., and von Heijne, G., 1990a, Cleavage-site motifs in mitochondrial targeting peptides, Protein Eng. 4:33–37.PubMedCrossRefGoogle Scholar
  38. Gavel, Y., and von Heijne, G., 1990b, A conserved cleavage-site motif in chloroplast transit peptides, FEBS Lett. 261:455–458.PubMedCrossRefGoogle Scholar
  39. Gavel, Y., and von Heijne, G., 1992, The distribution of charged amino acids in mitochondrial inner membrane proteins suggests different modes of membrane integration for nuclearly and mito-chondrially encoded proteins, Eur. J. Biochem. 205:1207–1215.PubMedCrossRefGoogle Scholar
  40. Gething, M. J., and Sambrook, J., 1992, Protein folding in the cell, Nature 355:33–45.PubMedCrossRefGoogle Scholar
  41. Gierasch, L. M., 1989, Signal sequences, Biochemistry 28:923–930.PubMedCrossRefGoogle Scholar
  42. Glick, B., and Schatz, G., 1991, Import of proteins into mitochondria, Annu. Rev. Genet. 25:21–44.PubMedCrossRefGoogle Scholar
  43. Gould, S. J., Keller, G.-A., Hosken, N., Wilkinson, J., and Subramani, S., 1989, A conserved tripeptide sorts proteins to peroxisomes, J. Cell Biol. 108:1657–1664.PubMedCrossRefGoogle Scholar
  44. Gould, S. J., Keller, G. A., Schneider, M., Howell, S. H., Garrard, L. J., Goodman, J. M., Distel, B., Tabak, H., and Subramani, S., 1990a, Peroxisomal protein import is conserved between yeast, plants, insects and mammals, EMBO J. 9:85–90.PubMedGoogle Scholar
  45. Gould, S. J., Krisans, S., Keller, G. A., and Subramani, S., 1990b, Antibodies directed against the peroxisomal targeting signal of firefly luciferase recognize multiple mammalian peroxisomal proteins, J. Cell Biol. 110:27–34.PubMedCrossRefGoogle Scholar
  46. Green, R., Kramer, R. A., and Shields, D., 1989, Misplacement of the amino-terminal positive charge in the prepro-α-factor signal peptide disrupts membrane translocation in vivo, J. Biol. Chem. 264:2963–2968.PubMedGoogle Scholar
  47. Haeuptle, M. T., Flint, N., Gough, N. M., and Dobberstein, B., 1989, A tripartite structure of the Signals that determine protein insertion into the endoplasmic reticulum membrane, J. Cell Biol. 108:1227–1236.PubMedCrossRefGoogle Scholar
  48. Halpin, C. Elderfield, P. D., James, H. E., Zimmermann, R., Dunbar, B., and Robinson, C., 1989, The reaction specificities of the thylakoidal processing peptidase and Escherichia coli leader peptidase are identical, EMBO J. 8:3917–3921.PubMedGoogle Scholar
  49. Hartl, F. U., and Neupert, W., 1990, Protein sorting to mitochondria: Evolutionary conservations of folding and assembly, Science 247:930–938.PubMedCrossRefGoogle Scholar
  50. Hartmann, E., Rapoport, T. A., and Lodish, H. F., 1989, Predicting the orientation of eukaryotic membrane proteins, Proc. Natl. Acad. Sci. USA 86:5786–5790.PubMedCrossRefGoogle Scholar
  51. Hase, T., Müller, U., Riezman, H., and Schatz, G., 1984, A 70-kd protein of the yeast mitochondrial outer membrane is targeted and anchored via its extreme amino terminus, EMBO J. 3:3157–3164.PubMedGoogle Scholar
  52. Hendrick, J. P., Hodges, P. E., and Rosenberg, L. E., 1989, Survey of amino-terminal proteolytic cleavage sites in mitochondrial precursor proteins: Leader peptides cleaved by two matrix proteases share a three-amino acid motif, Proc. Natl. Acad. Sci. USA 86:4056–4060.PubMedCrossRefGoogle Scholar
  53. High, S., and Dobberstein, B., 1991, The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle, J. Cell Biol. 113:229–233.PubMedCrossRefGoogle Scholar
  54. Hikita, C., and Mizushima, S., 1992, Effects of total hydrophobicity and length of the hydrophobic domain of a signal peptide on in vitro translocation efficiency, J. Biol. Chem. 267:4882–4888.PubMedGoogle Scholar
  55. Hohfeld, J., Veenhuis, M., and Kunau, W. H., 1991, PAS3, a Saccharomyces cerevisiae gene encoding a peroxisomal integral membrane protein essential for peroxisome biogenesis, J. Cell Biol. 114:1167–1178.PubMedCrossRefGoogle Scholar
  56. Hoyt, D. W., and Gierasch, L. M., 1991, Hydrophobic content and lipid interactions of wild-type and mutant OmpA signal peptides correlate with their in vivo function, Biochemistry 30:10155–10163.PubMedCrossRefGoogle Scholar
  57. Hurt, E. C., Pesold, H. B., Suda, K., Oppliger, W., and Schatz, G., 1985, The first twelve amino acids (less than half of the pre-sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix, EMBO J. 4:2061–2068.PubMedGoogle Scholar
  58. Hurtley, S. M., 1992, Golgi localization signals, Trends Biochem. Sci. 17:2–3.PubMedCrossRefGoogle Scholar
  59. Hwang, S. T., and Schatz, G., 1989, Translocation of proteins across the mitochondrial inner membrane, but not into the outer membrane, requires nucleoside triphosphates in the matrix, Proc. Natl. Acad. Sci. USA 86:8432–8436.PubMedCrossRefGoogle Scholar
  60. Isaya, G., Kalousek, F., and Rosenberg, L. E., 1992, Amino-terminal octapeptides function as recognition signals for the mitochondrial intermediate peptidase, J. Biol. Chem. 267:7904–7910.PubMedGoogle Scholar
  61. Jackson, M. R., Nilsson, T., and Peterson, P. A., 1990, Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum, EMBO J. 9:3153–3162.PubMedGoogle Scholar
  62. Johansson, M., Nilsson, I., and von Heijne, G., 1993, Positively charged amino acids placed next to a signal sequence block protein translocation more efficiently in Escherichia coli than in mammalian microsomes, Mol. Gen. Genet., 239:251–256.PubMedGoogle Scholar
  63. Jordi, W., de Kruijff, B., and Marsh, D., 1989, Specificity of the interaction of amino-terminal and carboxy-terminal fragments of the mitochondrial precursor protein apocytochrome-c with negatively charged phospholipids: A spin-label electron spin resonance study, Biochemistry 28:8998–9005.PubMedCrossRefGoogle Scholar
  64. Kalousek, F., Hendrick, J. P., and Rosenberg, L. E., 1988, Two mitochondrial matrix proteases act sequentially in the processing of mammalian matrix enzymes, Proc. Natl. Acad. Sci. USA 85:7536–7540.PubMedCrossRefGoogle Scholar
  65. Klausner, R. D., and Sitia, R., 1990, Protein degradation in the endoplasmic reticulum, Cell 62:611–614.PubMedCrossRefGoogle Scholar
  66. Kleene, R., Pfanner, N., Pfaller, R., Link, T. A., Sebald, W., Neupert, W., and Tropschug, M., 1987, Mitochondrial porin of Neurospora crassa: cDNA cloning, in vitro expression and import into mitochondria, EMBO J. 6:2627–2683.PubMedGoogle Scholar
  67. Kohara, A., Yamamoto, Y., and Kikuchi, M., 1991, Alteration of N-terminal residues of mature human lysozyme affects its secretion in yeast and translocation into canine microsomal vesicles, J. Biol. Chem. 266:20363–20368.PubMedGoogle Scholar
  68. Koll, H., Guiard, B., Rassow, J., Ostermann, J., Horwich, A. L., Neupert, W., and Haiti, F. U., 1992, Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space, Cell 68:1163–1175.PubMedCrossRefGoogle Scholar
  69. Kornfeld, S., and Mellman, I., 1989, The biogenesis of lysosomes, Annu. Rev. Cell. Biol. 5:483–525.PubMedCrossRefGoogle Scholar
  70. Kuroiwa, T., Sakaguchi, M., Mihara, K., and Omura, T., 1991, Systematic analysis of stop-transfer sequence for microsomal membrane, J. Biol. Chem. 266:9251–9255.PubMedGoogle Scholar
  71. Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105–132.PubMedCrossRefGoogle Scholar
  72. Laws, J. K., and Dalbey, R. E., 1989, Positive charges in the cytoplasmic domain of Escherichia coli leader peptidase prevent an apolar domain from functioning as a signal, EMBO J. 8:2095–2099.PubMedGoogle Scholar
  73. Lehnhardt, S., Pollitt, N. S., Goldstein, J., and Inouye, M., 1988, Modulation of the effects of mutations in the basic region of the OmpA signal peptide by the mature portion of the protein, J. Biol. Chem. 263:10300–10303.PubMedGoogle Scholar
  74. Lemire, B. D., Fankhauser, C., Baker, A., and Schatz, G., 1989, The mitochondrial targeting function of randomly generated peptide sequences correlates with predicted helical am-phiphilicity, J. Biol. Chem. 264:20206–20215.PubMedGoogle Scholar
  75. Li, H. M., Moore, T., and Keegstra, K., 1991, Targeting of proteins to the outer envelope membrane uses a different pathway than transport into chloroplasts, Plant Cell 3:709–717.PubMedGoogle Scholar
  76. Li, P., Beckwith, J., and Inouye, H., 1988, Alteration of the amino terminus of the mature sequence of a periplasmic protein can severely affect protein export in Escherichia coli, Proc. Natl. Acad. Sci. USA 85:7685–7689.PubMedCrossRefGoogle Scholar
  77. Lill, R., Stuart, R. A., Drygas, M. E., Nargang, F. E., and Neupert, W., 1992, Import of cytochrome-c heme lyase into Mitochondria: A novel pathway into the intermembrane space, EMBO J. 11:449–456.PubMedGoogle Scholar
  78. Lutcke, H., High, S., Romisch, K., Ashford, A. J., and Dobberstein, B., 1992, The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences, EMBO J. 11:1543–1551.PubMedGoogle Scholar
  79. Maclntyre, S., Eschbach, M. L., and Mutschier, B., 1990, Export incompatibility of N-terminal basic residues in a mature Polypeptide of Escherichia coli can be alleviated by optimizing the signal peptide, Mol. Gen. Genet. 221:466–474.CrossRefGoogle Scholar
  80. Martin, J., Mahlke, K., and Pfanner, N., 1991, Role of an energized inner membrane in mitochondrial protein import: ΔΨ drives the movement of presequences, J. Biol. Chem. 266:18051–18057.PubMedGoogle Scholar
  81. McGovern, K., Ehrmann, M., and Beckwith, J., 1991, Decoding signals for membrane protein assembly using alkaline Phosphatase fusions, EMBO J. 10:2773–2782.PubMedGoogle Scholar
  82. Meadows, J. W., and Robinson, C., 1991, The full precursor of the 33 kDa oxygen-evolving complex protein of wheat is exported by Escherichia coli and processed to the mature size, Plant Mol. Biol. 17:1241–1243.PubMedCrossRefGoogle Scholar
  83. Miyazawa, S., Osumi, T., Hashimoto, T., Ohno, K., Miura, S., and Fujiki, Y., 1989, Peroxisome targeting signal of rat liver acyl-coenzyme A oxidase resides at the carboxy terminus, Mol. Cell. Biol. 9:83–91.PubMedGoogle Scholar
  84. Mould, R. M., Shackleton, J. B., and Robinson, C., 1991, Transport of proteins into chloroplasts: Requirements for the efficient import of two lumenal oxygen-evolving complex proteins into isolated thylakoids, J. Biol. Chem. 266:17286–17289.PubMedGoogle Scholar
  85. Muesch, A., Hartmann, E., Rohde, K., Rubartelli, A., Sitia, R., and Rapoport, T. A., 1990, A novel pathway for secretory proteins, Trends Biochem. Sci. 15:86–88.PubMedCrossRefGoogle Scholar
  86. Munro, S., 1991, Sequences within and adjacent to the transmembrane segment of α-2,6-sialyltransferase specify Golgi retention, EMBO J. 10:3577–3588.PubMedGoogle Scholar
  87. Nakai, K., 1991, Predicting various targeting signals in amino acid sequences, Bull. Inst. Chem. Res. Kyoto Univ. 69:269–291.Google Scholar
  88. Nakai, K., and Kanehisa, M., 1991, Expert system for predicting protein localization sites in gram-negative bacteria, Proteins: Struct. Funct. Genet. 11:95–110.CrossRefGoogle Scholar
  89. Nakai, M., Hase, T., and Matsubara, H., 1989, Precise determination of the mitochondrial import signal contained in a 70 kDa protein of yeast mitochondrial outer membrane, J. Biochem. 105:513–519.PubMedGoogle Scholar
  90. Nargang, F. E., Drygas, M. E., Kwong, P. L., Nicholson, D. W., and Neupert, W., 1988, A mutant of Neurospora crassa deficient in cytochrome c heme lyase activity cannot import cytochrome c into mitochondria, J. Biol. Chem. 263:9388–9394.PubMedGoogle Scholar
  91. Nicholson, D. W., and Neupert, W., 1989, Import of cytochrome c into mitochondria: Reduction of heme, mediated by NADH and flavin nucleotides, is obligatory for its covalent linkage to apocytochrome c, Proc. Natl. Acad. Sci. USA 86:4340–4344.PubMedCrossRefGoogle Scholar
  92. Nilsson, I., and von Heijne, G., 1992, A signal peptide with a proline next to the cleavage site inhibits leader peptidase when present in a sec-independent protein, FEBS Lett. 299:243–246.PubMedCrossRefGoogle Scholar
  93. Nilsson, I. M., and von Heijne, G., 1990, Fine-tuning the topology of a polytopic membrane protein: Role of positively and negatively charged residues, Cell 62:1135–1141.PubMedCrossRefGoogle Scholar
  94. Nilsson, T., Lucocq, J. M., Mackay, D., and Warren, G., 1991, The membrane spanning domain of β-l,4-galactosyltransferase specifies trans Golgi localization, EMBO J. 10:3567–3575.PubMedGoogle Scholar
  95. Osumi, T., Tsukamoto, T., Hata, S., Yokota, S., Miura, S., Fujiki, Y., Hijikata, M., Miyazawa, S., and Hashimoto, T., 1991, Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting, Biochem. Biophys. Res. Commun. 181:947–954.PubMedCrossRefGoogle Scholar
  96. Parks, G. D., and Lamb, R. A., 1991, Topology of eukaryotic type-II membrane proteins: Importance of N-terminal positively charged residues flanking the hydrophobic domain, Cell 64:777–787.PubMedCrossRefGoogle Scholar
  97. Pelham, H. R. B., 1990, The retention signal for soluble proteins of the endoplasmic reticulum, Trends Biochem. Sci. 15:483–486.PubMedCrossRefGoogle Scholar
  98. Perlman, D., and Halvorson, H. O., 1983, A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides, J. Mol. Biol. 167:391–409.PubMedCrossRefGoogle Scholar
  99. Perry, S. E., Buvinger, W. E., Bennett, J., and Keegstra, K., 1991, Synthetic analogues of a transit peptide inhibit binding or translocation of chloroplastic precursor proteins, J. Biol. Chem. 266:11882–11889.PubMedGoogle Scholar
  100. Peters, C., Braun, M., Weber, B., Wendland, M., Schmidt, B., Pohlmann, R., Waheed, A., and von Figura, K., 1990, Targeting of a lysosomal membrane protein: A tyrosine-containing endo-cytosis signal in the cytoplasmic tail of lysosomal acid Phosphatase is necessary and sufficient for targeting to lysosomes, EMBO J. 9:3497–3506.PubMedGoogle Scholar
  101. Pfanner, N., Rassow, J., Vanderklei, I. J., and Neupert, W., 1992, A dynamic model of the mitochondrial protein import machinery, Cell 68:999–1002.PubMedCrossRefGoogle Scholar
  102. Pfanner, N., Tropschug, M., and Neupert, W., 1987, Mitochondrial protein import: Nucleo-side triphosphates are involved in conferring import-competence to precursors, Cell 49: 815–823.PubMedCrossRefGoogle Scholar
  103. Pollock, R. A., Haiti, F. U., Cheng, M. Y, Ostermann, J., Horwich, A., and Neupert, W., 1988, The processing peptidase of yeast mitochondria: The two co-operating components MPP and PEP are structurally related, EMBO J. 7:3493–3500.PubMedGoogle Scholar
  104. Puziss, J. W., Fikes, J. D., and Bassford, P. J., 1989, Analysis of mutational alterations in the hydrophilic segment of the maltose-binding protein signal peptide, J. Bacteriol. 171:2303–2311.PubMedGoogle Scholar
  105. Puziss, J. W., Strobel, S. M., and Bassford, P. J., 1992, Export of maltose-binding protein species with altered charge distribution surrounding the signal peptide hydrophobic core in Escherichia coli cells harboring prl suppressor mutations, J. Bacteriol. 174:92–101.PubMedGoogle Scholar
  106. Riezman, H., Hase, T., van Loon, A., Grivell, L. A., Suda, K., and Schatz, G., 1983, Import of proteins into mitochondria: A 70 kilodalton outer membrane protein with a large carboxy-terminal deletion is still transported to the outer membrane, EMBO J. 2:2161–2168.PubMedGoogle Scholar
  107. Robbins, J., Dilworth, S. M., Laskey, R. A., and Dingwall, C., 1991, Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of bipartite nuclear targeting sequence, Cell 64:615–623.PubMedCrossRefGoogle Scholar
  108. Roise, D., Horvath, S. J., Tomich, J. M., Richards, J. H., and Schatz, G., 1986, A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers, EMBO J. 5:1327–1334.PubMedGoogle Scholar
  109. Rusch, S. L., and Kendall, D. A., 1992, Signal sequences containing multiple aromatic residues, J. Mol. Biol. 224:77–85.PubMedCrossRefGoogle Scholar
  110. Salomon, M., Fischer, K., Flügge, U. I., and Soll, J., 1990, Sequence analysis and protein import studies of an outer chloroplast envelope Polypeptide, Proc. Natl. Acad. Sci. USA 87:5778–5782.PubMedCrossRefGoogle Scholar
  111. Sato, T., Sakaguchi, M., Mihara, K., and Omura, T., 1990, The amino-terminal structures that determine topological orientation of cytochrome-P-450 in microsomal membrane, EMBO J. 9:2391–2397.PubMedGoogle Scholar
  112. Schatz, P. J., and Beckwith, J., 1990, Genetic analysis of protein export in Escherichia coli. Annu. Rev. Genet. 24:215–248.PubMedCrossRefGoogle Scholar
  113. Shackleton, J. B., and Robinson, C., 1991, Transport of proteins into chloroplasts: The thylakoidal processing peptidase is a signal-type peptidase with stringent substrate requirements at the-3-position and-1-position, J. Biol. Chem. 266:12152–12156.PubMedGoogle Scholar
  114. Shen, L. M., Lee, J.-I., Cheng, S., Jutte, H., Kuhn, A., and Dalbey, R. E., 1991, Use of site-directed mutagenesis to define the limits of sequence variation tolerated for processing of the M13 procoat protein by the Escherichia coli leader peptidase, Biochemistry 30:11775–11781.PubMedCrossRefGoogle Scholar
  115. Silver, P. A., 1991, How proteins enter the nucleus, Cell 64:489–497.PubMedCrossRefGoogle Scholar
  116. Summers, R. G., Harris, C. R., and Knowles, J. R., 1989, A conservative amino acid substitution, arginine for lysine, abolishes export of a hybrid protein in Escherichia coli: Implications for the mechanism of protein secretion, J. Biol. Chem. 264:20082–20088.PubMedGoogle Scholar
  117. Sung, M., and Dalbey, R., 1992, Identification of potential active-site residues in the Escherichia coli leader peptidase, J. Biol. Chem. 267:13154–13159.PubMedGoogle Scholar
  118. Sweet, D. J., and Pelham, H. R. B., 1992, The Saccharomyces cerevisiae SEC20 gene encodes a membrane glycoprotein which is sorted by the HDEL retrieval system, EMBO J. 11:423–432.PubMedGoogle Scholar
  119. Swift, A. M., and Machamer, C. E., 1991, A Golgi retention signal in a membrane-spanning domain of coronavirus-El protein, J. Cell Biol. 115:19–30.PubMedCrossRefGoogle Scholar
  120. Swinkels, B. W., Gould, S. J., Bodnar, A. G., Rachubinski, R. A., and Subramani, S., 1991, A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase, EMBO J. 10:3255–3262.PubMedGoogle Scholar
  121. Szczesna-Skorupa, E., and Kemper, B., 1989, NH2-terminal substitutions of basic amino acids induce translocation across the microsomal membrane and glycosylation of rabbit cytochrome P450C2, J. Cell Biol. 108:1237–1243.PubMedCrossRefGoogle Scholar
  122. Teasdale, R. D., Dagostaro, G., and Gleeson, P. A., 1992, The signal for Golgi retention of bovine-β 1,4-galactosyltransferase is in the transmembrane domain, J. Biol. Chem. 267:4084–4096.PubMedGoogle Scholar
  123. Tsukamoto, T., Miura, S., and Fujiki, Y., 1991, Restoration by a 35K membrane protein of peroxi-some assembly in a peroxisome-deficient mammalian cell mutant, Nature 350:77–81.PubMedCrossRefGoogle Scholar
  124. van’t Hof, R., Demel, R. A., Keegstra, K., and de Kruijff, B., 1991, Lipid peptide interactions between fragments of the transit peptide of ribulose-l,5-bisphosphate carboxylase oxygenase and chloroplast membrane lipids, FEBS Lett. 291:350–354.CrossRefGoogle Scholar
  125. Vega, M. A., Rodriguez, F., Segui, B., Cales, C., Alcalde, J., and Sandoval, I. V., 1991, Targeting of lysosomal integral membrane protein LIMP-II: The tyrosine-lacking carboxyl cytoplasmic tail of LIMP-II is sufficient for direct targeting to lysosomes, J. Biol. Chem. 266:16269–16272.PubMedGoogle Scholar
  126. von Heijne, G., 1983, Patterns of amino acids near signal-sequence cleavage sites, Eur. J. Biochem. 133:17–21.CrossRefGoogle Scholar
  127. von Heijne, G., 1984, Analysis of the distribution of charged residues in the N-terminal region of signal sequences: Implications for protein export in prokaryotic and eukaryotic cells, EMBO J. 3:2315–2318.Google Scholar
  128. von Heijne, G., 1985, Signal sequences: The limits of variation, J. Mol. Biol. 184:99–105.CrossRefGoogle Scholar
  129. von Heijne, G., 1986a, The distribution of positively charged residues in bacterial inner membrane proteins correlates with the transmembrane topology, EMBO J. 5:3021–3027.PubMedGoogle Scholar
  130. von Heijne, G., 1986b, Mitochondrial targeting sequences may form amphiphilic helices, EMBO J. 5:1335–1342.Google Scholar
  131. von Heijne, G., 1986c, Net N-C charge imbalance may be important for signal sequence function in bacteria, J. Mol. Biol. 192:287–290.CrossRefGoogle Scholar
  132. von Heijne, G., 1986d, A new method for predicting signal sequence cleavage sites, Nucleic Acids Res. 14:4683–4690.CrossRefGoogle Scholar
  133. von Heijne, G., 1989, Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues, Nature 341:456–458.CrossRefGoogle Scholar
  134. von Heijne, G., 1990, The signal peptide, J. Membr. Biol. 115:195–201.CrossRefGoogle Scholar
  135. von Heijne, G., 1992, Membrane protein structure prediction: Hydrophobicity analysis and the ‘positive inside’ rule, J. Mol. Biol. 225:487–494.CrossRefGoogle Scholar
  136. von Heijne, G., and Gavel, Y., 1988, Topogenic signals in integral membrane proteins, Eur. J. Biochem. 174:671–678.CrossRefGoogle Scholar
  137. von Heijne, G., and Manoil, C., 1990, Membrane proteins: From sequence to structure, Protein Eng. 4:109–112.CrossRefGoogle Scholar
  138. von Heijne, G., and Nishikawa, K., 1991, Chloroplast transit peptides: The perfect random coil?, FEBS Lett. 278:1–3.CrossRefGoogle Scholar
  139. von Heijne, G., Steppuhn, J., and Herrmann, R. G., 1989, Domain structure of mitochondrial and chloroplast targeting peptides, Eur. J. Biochem. 180:535–545.CrossRefGoogle Scholar
  140. Walton, P. A., Gould, S. J., Feramisco, J. R., and Subramani, S., 1992, Transport of microinjected proteins into peroxisomes of mammalian cells: Inability to Zellweger cell lines to import proteins with the SKL tripeptide peroxisomal targeting signal, Mol. Cell. Biol. 12:531–541.PubMedGoogle Scholar
  141. Wickner, W., Driessen, A. J. M., and Hartl, F. U., 1991, The enzymology of protein translocation across the Escherichia coli plasma membrane, Annu. Rev. Biochem. 60:101–124.PubMedCrossRefGoogle Scholar
  142. Yamamoto, Y., and Kikuchi, M., 1989, Synthesis, processing and degradation in yeast of precursor human lysozyme with newly designed signal sequences, Eur. J. Biochem. 184:233–236.PubMedCrossRefGoogle Scholar
  143. Yamamoto, Y., Taniyama, Y., and Kikuchi, M., 1989, Important role of the proline residue in the signal sequence that directs the secretion of human lysozyme in Saccharomyces cerevisiae, Biochemistry 28:2728–2732.PubMedCrossRefGoogle Scholar
  144. Yamane, K., and Mizushima, S., 1988, Introduction of basic amino acids residues after the signal peptide inhibits protein translocation across the cytoplasmic membrane of Escherichia coli, J. Biol. Chem. 263:19690–19696.PubMedGoogle Scholar
  145. Yang, M., Jensen, R. E., Yaffe, M. P., Oppliger, W., and Schatz, G., 1988, Import of proteins into yeast mitochondria: The purified matrix processing protease contains two subunits which are encoded by the nuclear MAS1 and MAS2 genes, EMBO J. 7:3857–3862.PubMedGoogle Scholar
  146. Zhu, H. Y., and Dalbey, R. E., 1989, Both a short hydrophobic domain and a carboxyl-terminal hydrophilic region are important for signal function in the Escherichia coli leader peptidase, J. Biol. Chem. 264:11833–11838.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Gunnar von Heijne
    • 1
    • 2
  1. 1.Department of Molecular BiologyKarolinska InstituteHuddingeSweden
  2. 2.Center for Structural BiochemistryNOVUMHuddingeSweden

Personalised recommendations