Methanogenesis pp 128-206

Part of the Chapman & Hall Microbiology Series book series (CHMBS) | Cite as

Physiological Ecology of Methanogens

  • Stephen H. Zinder

Abstract

Biological methanogenesis plays a major role in the carbon cycle on Earth. Methanogenesis is the terminal step in carbon flow in many anaerobic habitats, including marine and freshwater sediments, marshes and swamps, flooded soils, bogs, geothermal habitats, and animal gastrointestinal tracts. CH4 escaping from anaerobic habitats can serve as a carbon and energy source for aerobic methanotrophic bacteria, and can escape to the atmosphere, where it is a major participant in atmospheric chemical reactions and is an important greenhouse gas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abram, J. W., and D. B. Nedwell. 1978. Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen. Arch. Microbiol. 117:89–92.PubMedGoogle Scholar
  2. Aceti, D. J., and J. G. Ferry. 1988. Purification of acetate kinase from acetate-grown Methanosarcina thermophila. Evidence for regulation of synthesis. J. Biol. Chem. 263:15444–15448.PubMedGoogle Scholar
  3. Ahring, B. K., and P. Westermann. 1985. Methanogenesis from acetate: physiology of a thermophilic, acetate-utilizing methanogenic bacterium. FEMS Microbiol. Lett. 28:15–19.Google Scholar
  4. Ahring, B. K., and P. Westermann. 1987. Kinetics of butryate, acetate, and hydrogen metabolism in a thermophilic, anaerobic butyrate-degrading triculture. Appl. Environ. Microbiol. 53:434–439.PubMedGoogle Scholar
  5. Allison, M. J., K. A. Dawson, W. R. Mayberry, and J. G. Foss. 1985. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 141:1–7.PubMedGoogle Scholar
  6. Amman, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:1919–1925.Google Scholar
  7. Archer, D. B., and M. W. Peck. 1989. The microbiology of methane production in landfills. In Microbiology of extreme environments and its potential for biotechnology, M. S. d. Costa et al. (eds.), pp. 187–204, Elsevier, London.Google Scholar
  8. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 43:260–296.PubMedGoogle Scholar
  9. Beaty, P. S., and M. J. Mclnerney. 1987. Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch. Microbiol. 147:389–393.Google Scholar
  10. Beaty, P. S., and M. J. Mclnerney. 1989. Effects of organic acid anions on the growth and metabolism of Syntrophomonas wolfei in pure culture and in defined consortia. Appl. Environ. Microbiol. 55:977–983.PubMedGoogle Scholar
  11. Belay, N., and L. Daniels. 1987. Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl. Environ. Microbiol. 53:1604–1610.PubMedGoogle Scholar
  12. Belay, N., R. Johnson, B. S. Rajagopal, E. Conway de Macario, and L. Daniels. 1988. Methanogenic bacteria from human dental plaque. Appl. Environ. Microbiol. 54:600–603.PubMedGoogle Scholar
  13. Belay, N., R. Sparling, and L. Daniels. 1984. Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature 312:286–288.PubMedGoogle Scholar
  14. Bhatnagar, L., and B. Z. Fathepure. 1991. Mixed cultures in detoxification of hazardous waste. In Mixed cultures in biotechnology, J. G. Zeikus and E. A. Johnson (eds.), pp. 293–340. McGraw-Hill, New York.Google Scholar
  15. Blaut, M., and G. Gottschalk. 1982. Effect of trimethylamine on acetate utilization by Methanosarcina barkeri. Arch. Microbiol. 133: 230–235.Google Scholar
  16. Bleicher, K., G. Zellner, and J. Winter. 1989. Growth of methanogens on cyclopentanol/CO2 and specificity of alcohol dehydrogenase. FEMS Microbiol. Lett. 59:307–312.Google Scholar
  17. Blotevogel, K. H., U. Fischer, M. Mocha, and S. Jannsen. 1985. Methanobacterium thermoalcaliphilum spec, nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch. Microbiol. 142:211–217.Google Scholar
  18. Bockelée-Morvan, D., P. Colom, J. Crovisier, D. Despoi, and G. Paubert. 1991. Microwave detection of hydrogen sulphide and methanol in comet Austin (1989c 1). Nature 350:318–320.Google Scholar
  19. Boone, D. R. 1982. Terminal reactions in the anaerobic digestion of animal waste. Appl. Environ. Microbiol. 43:57–64.PubMedGoogle Scholar
  20. Boone, D. R. 1992. Personal communication.Google Scholar
  21. Boone, D. R., and M. P. Bryant. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40:626–632.PubMedGoogle Scholar
  22. Boone, D. R., R. L. Johnson, and Y. Liu. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of K m for H2 or formate uptake. Appl. Environ. Microbiol. 55:1735–1741.PubMedGoogle Scholar
  23. Bouthier de la Tour, C., C. Portemer, R. Huber, P. Forterre, and M. Duguet. 1991. Reverse gyrase in thermophilic eubacteria. J. Bacteriol. 173:3921–3923.PubMedGoogle Scholar
  24. Bouthier de la Tour, C., C. Portemer, M. Nadal, K. O. Stetter, P. Forterre, and M. Duguet. 1990. Reverse gyrase: a hallmark of hyperthermophilic archaebacteria. J. Bacteriol. 127:6803–6808.Google Scholar
  25. Bouwer, E. J., and P. L. McCarty. 1983. Transformations of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45:1286–1294.PubMedGoogle Scholar
  26. Breznak, J. A. 1982. Intestinal microbiota of termites and other xylophagous insects. Ann. Rev. Microbiol. 36:323–343.Google Scholar
  27. Breznak, J. A., and M. D. Kane. 1990. Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Rev. 87:309–314.Google Scholar
  28. Breznak, J. A., and J. M. Switzer. 1986. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol. 52:623630.Google Scholar
  29. Breznak, J. A., J. M. Switzer, and H.-J. Scitz. 1988. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.Google Scholar
  30. Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33:1162–1169.PubMedGoogle Scholar
  31. Bryant, M. P., E. A. Wolin, M. J. Wolin, and R. S. Wolfe. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol. 59:20–31.Google Scholar
  32. Buhr, H. O., and J. F. Andrews. 1977. The thermophilic anaerobic digestion process. Water Res. 11:129–143.Google Scholar
  33. Burggraf, S., A. Ching, K. O. Steeter, and C. R. Woese. 1991. The sequence of Methanospirillum hungatei 23S rRNA confirms the specific relationship between the extreme halophiles and the Methanomicrobiales. System. Appl. Microbiol. 14:358–363.Google Scholar
  34. Burggraf, S., H. Fricke, A. Neuner, J. Kristjansson, P. Rouviere, L. Mandelco, C. R. Woese, and K. O. Stetter. 1990. Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. System. Appl. Microbiol. 13:263–269.Google Scholar
  35. Chappellaz, J., J. M. Barnola, D. Raynaud, Y. S. Korotkevich, and C. Lorius. 1990. Ice-core record of atmospheric methane over the past 160,000 years. Nature 345:127–131.Google Scholar
  36. Chartrain, M., and J. G. Zeikus. 1986. Microbial ecophysiology of whey biomethanation: intermediary metabolism of lactose degradation in continuous culture. Appl. Environ. Microbiol. 51:180–187.PubMedGoogle Scholar
  37. Chin, S., and S. Zinder. 1982. Unpublished results.Google Scholar
  38. Clay pool, G. E., and LR. Kaplan. 1974. The origin and distribution of methane in marine sediments. In Natural gases in marine sediments, I. R. Kaplan (ed.), pp. 99–140. Plenum Press, New York.Google Scholar
  39. Conrad, R., F. Bak, H. J. Scitz, B. Thebrath, H. P. Mayer, and H. Schütz. 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anaoxic paddy soil and lake sediment. FEMS Microbiol. Ecol. 62:285–294.Google Scholar
  40. Conrad, R., T. J. Phelps, and J. G. Zeikus. 1985. Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl. Environ. Microbiol. 50:595–601.PubMedGoogle Scholar
  41. Conrad, R., B. Schink, and T. J. Phelps. 1986. Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under In situ conditions. FEMS Microbiol. Ecol. 38:353–359.Google Scholar
  42. Conrad, R., H. Schütz, and M. Babbel. 1987. Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiol. Ecol. 45:281–289.Google Scholar
  43. Conrad, R., and B. Wetter. 1990. Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch. Microbiol. 155:94–98.Google Scholar
  44. Conway de Macario, E., M. J. Wolin, and A. J. L. Macario. 1982. Antibody analysis of relationships among methanogenic bacteria. J. Bacteriol. 149:316–319.PubMedGoogle Scholar
  45. Cord-Ruwisch, R., H.-J. Steitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350–357.Google Scholar
  46. Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53:121–147.PubMedGoogle Scholar
  47. Dacey, J. W. H., and M. J. Klug. 1979. Methane efflux from lake sediments through water lilies. Science 203:1253–1255.PubMedGoogle Scholar
  48. Daniels, L., N. Belay, B. S. Rajagopal, and P. J. Weimer. 1987. Bacterial methanogenesis and the growth of CO2 with elemental iron as the sole source of electrons. Science 237:509–511.PubMedGoogle Scholar
  49. Daniels, L., G. Fuchs, R. K. Thauer, and J. G. Zeikus. 1978. Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132:118–126.Google Scholar
  50. Daniels, L., R. Sparling, and G. D. Sprott. 1984. The bioenergetics of methanogenesis. Biochem. Biophys. Acta. 168:113–163.Google Scholar
  51. de Bruin, W. R., M. J. J. Kotterman, M. A. Posthumus, G. Schraa, and A. J. B. Zehnder. 1992. Complete biological reductive transformation of tetrachloroethylene to ethane. Appl. Environ. Microbiol. 58:1996–2000.PubMedGoogle Scholar
  52. de Man, J. C. 1975. The probability of most probable numbers. Eur. J. Appl. Microbiol. 1:67–78.Google Scholar
  53. DeWeerd, K. A., L. Mandelco, R. S. Tanner, C. R. Woese, and J. M. Sulflita. 1990. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154:23–30.Google Scholar
  54. DiStefano, T. D., J. M. Gossett, and S. H. Zinder. 1991. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl. Environ. Microbiol. 57:2287–2292.PubMedGoogle Scholar
  55. Doddema, H. J., and G. D. Vogels. 1978. Improved identification of methanogenic bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 36:752–754.PubMedGoogle Scholar
  56. Dolfing, J., A. Griffioen, A. R. W. van Neerven, and L. P. T. M. Zevenhuizen. 1985. Chemical and bacteriological composition of granular methanogenic sludge. Can. J. Microbiol. 31:744–750.Google Scholar
  57. Dolfing, J., and J. M. Tiedje. 1986. Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS Microbiol. Ecol. 38:293–298.Google Scholar
  58. Dubourgier, H. C., D. B. Archer, G. Algagnac, and G. Prensier. 1988. Structure and metabolism of methanogenic microbial conglomerates. In Anaerobic Digestion 1988, E. R. Hall and P. N. Hobson (eds.), pp. 13–23. Pergammon Press, Oxford.Google Scholar
  59. Egli, C., R. Scholtz, A. M. Cook, and T. Leisinger. 1987. Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Lett. 43:257–261.Google Scholar
  60. Ekiel, I., K. F. Jarrell, and G. D. Sprott. 1985. Amino acid biosythesis and sodium-dependent transport in Methanococcus voltae as revealed by 13CNMR. Eur. J. Biochem. 149:437–444.PubMedGoogle Scholar
  61. Evans, J. N. S., C. J. Tolman, S. Kanodia, and M. F. Roberts. 1985. 2, 3-Cyclopyrophos-phoglycerate in methanogens: Evidence by 13CNMR spectroscopy for a role in carbohydrate metabolism. Biochemistry 24:5694—5698.Google Scholar
  62. Fathepure, B. Z., and S. A. Boyd. 1988. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. Strain DCM. Appl. Environ. Microbiol. 54:2976–2980.PubMedGoogle Scholar
  63. Fathepure, B. Z., J. M. Tiedje, and S. A. Boyd. 1988. Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzene in anaerobic sewage sludge. Appl. Environ. Microbiol. 54:327–330.PubMedGoogle Scholar
  64. Fathepure, B. Z., and T. M. Vogel. 1991. Complete degradation of poly chlorinated hydrocarbons by a two-stage biofilm reactor. Appl. Environ. Microbiol. 57:3418–3422.PubMedGoogle Scholar
  65. Fenchel, T., and B. J. Finlay. 1991. Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for growth efficiency of the host. J. Protozool. 38:18–22.Google Scholar
  66. Ferguson, T. J., and T. A. Man. 1983. Effect of H2-CO2 on methanogenesis from acetate or methanol in Methanosarcina spp. Appl. Environ. Microbiol. 46:348–355.PubMedGoogle Scholar
  67. Finlay, B. J., and T. Fenchel. 1991. An anaerobic protozoan with symbiotic methanogens living in municipal landfill material. FEMS Microbiol. Ecol. 85:169–179.Google Scholar
  68. Franklin, M. J., W. J. Wiebe, and W. B. Whitman. 1988. Populations of methanogenic bacteria in a salt marsh. Appl. Environ. Microbiol. 54:1151–1157.PubMedGoogle Scholar
  69. Freedman, D., and J. M. Gossett. 1991. Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl. Environ. Microbiol. 57:2847–2857.PubMedGoogle Scholar
  70. Freedman, D. L., and J. M. Gossett. 1989. Biological reductive dechlorination of tetrachloroethy lene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55:2144–2151.PubMedGoogle Scholar
  71. Fukazaki, S., N. Nishio, and S. Nagai. 1990. Kinetics of the methanogenic fermentation of acetate. Appl. Environ. Microbiol. 56:3158–3163.Google Scholar
  72. Gantzer, C. J., and L. P. Wackett. 1991. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ. Sci. Technol. 25:715–722.Google Scholar
  73. Gibson, S. A., and G. W. Sewell. 1992. Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols. Appl. Environ. Microbiol. 58:1392–1393.PubMedGoogle Scholar
  74. Gijzen, H. J., K. B. Zwart, F. J. M. Verhagen, and G. D. Vogels. 1988. High-rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis. Biotechnol. Bioeng. 31:418–425.PubMedGoogle Scholar
  75. Giovannoni, S. J., E. F. Delong, G. J. Olsen, and N. R. Pace. 1988. Phylogenetic groupspecific ologodeoxynuclotide probes for identification of single microbial cells. J. Bacteriol. 170:720–726.PubMedGoogle Scholar
  76. Goodwin, S., E. Girealdo-Gomez, M. Mobarry, and M. S. Swizenbaum. 1991. Comparison of diffusion and reaction rates in microbial aggregates. Microbial Ecol. 22:161–174.Google Scholar
  77. Goodwin, S., and J. G. Zeikus. 1987. Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments. Appl. Environ. Microbiol. 53:57–64.PubMedGoogle Scholar
  78. Gorris, L. G. M., and C. van der Drift. 1986. Methanogenic cofactors in pure cultures of methanogens in relation to substrate utilization. In Biology of anaerobic bacteria, H. C. Doubourgier et al. (eds.), pp. 144–150. Elsevier Science Publishers, Amsterdam.Google Scholar
  79. Gorris, L. G. M., J. M. A. van Deursen, C. van der Drift, and G. D. Vogels. 1989. Biofilm development in laboratory methanogenic fluidized bed reactors. Biotechnol. Bioeng. 33:687–693.PubMedGoogle Scholar
  80. Grajal, A., S. D. Strahl, R. Parra, M. G. Dominguez, and A. Neher. 1989. Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science 245:1236–1238.PubMedGoogle Scholar
  81. Grotenhuis, J. T. C., C. M. Pflugge, A. J. M. Stams, and A. J. B. Zehnder. 1992. Hydrophobicities and electrophoretic mobilities of anaerobic bacterial isolates from methanogenic granular sludge. Appl. Environ. Microbiol. 58:1054–1056.PubMedGoogle Scholar
  82. Grotenhuis, J. T. C., M. Smit, C. M. Plugge, X. Yuansheng, A. A. M. van Lammeren, A. J. M. Stams, and A. J. B. Zehnder. 1991. Bacteriological composition and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol. 57:1942–1949.PubMedGoogle Scholar
  83. Grotenhuis, J. T. C., M. Smit, A. A. M. van Lammeren, A. J. M. Stams, and A. J. B. Zehnder. 1991. Localization and quantification of extracellular polymers in methanogenic granular sludge. Appl. Microbiol. Biotechnol. 36:115–119.Google Scholar
  84. Gujer, W., and A. J. B. Zehnder. 1983. Conversion processes in anerobic digestion. Wat. Sci. Technol. 15:127–167.Google Scholar
  85. Gunsalus, R., J. A. Romesser, and R. S. Wolfe. 1978. Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry 17:2374—2377.PubMedGoogle Scholar
  86. Guzen, H. J., C. A. M. Broers, M. Barughare, and C. K. Stumm. 1991. Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalus in the cockroach hindgut. Appl. Environ. Microbiol. 57:1630–1634.Google Scholar
  87. Hall, E. R., and P. N. Hobson. 1988. Anaerobic Digestion 1988. Pergammon Press, Oxford.Google Scholar
  88. Hausinger, R. P., W. H. Orme-Johnson, and C. Walsh. 1985. Factor 390 chromophores: phosphodiester between AMP or GMP and methanogen factor 420. Biochemistry 24:1629–1633.PubMedGoogle Scholar
  89. Hensel, R., and H. König. 1988. Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMS Microbiol. Lett. 49:75–79.Google Scholar
  90. Herbert, A. M., A. M. Kropinski, and K. F. Jarrell. 1991. Heat shock response in the archaebacterium Methanococcus voltae. J. Bacteriol. 173:3224–3227.Google Scholar
  91. Hobson, P. N. 1988. The rumen microbial ecosystem. Elsevier Applied Science, New York.Google Scholar
  92. Holler, S., and N. Pfennig. 1991. Fermentation products of the anaerobic ciliate Trimyema compressum in monoxenic cultures. Arch. Microbiol. 156:327–334.Google Scholar
  93. Holliger, C. 1992. Ph.D. thesis. University of Wageningen, Holland.Google Scholar
  94. Hopkins, B. T., and M. J. Mclnerney. 1991. Evidence for a threshold for benzoate degradation by an anaerobic syntrophic coculture and isolation of the benzyate degrading bacterium in pure culture with crotonate. Q-89, p. 291. Abstr. 91st Annu. Meet. Am. Soc. Microbiol. 1991.Google Scholar
  95. Hungate, R. E. 1966. The rumen and its microbes. Vol. Academic Press, New York.Google Scholar
  96. Hungate, R. E. 1967. A roll tube method for cultivation of strict anaerobes. In Methods in Microbiology, Vol 2B, J. R. Norris and D. W. Ribbons (eds.), pp. 117–132. Academic Press, New York.Google Scholar
  97. Hungate, R. E. 1975. The rumen microbial ecosystem. Ann. Rev. Ecol. System. 1:41–66.Google Scholar
  98. Huser, A. A., K. Wuhrmann, and A. J. B. Zehnder. 1982. Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 132:1–9.Google Scholar
  99. Jablonski, P., A. A. DiMarco, T. A. Bobik, M. C. Cabell, and J. G. Ferry. 1990. Protein content and enzyme activities in methanol- and acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:1271–1275.PubMedGoogle Scholar
  100. Jannasch, H. W., and C. T. Taylor. 1984. Deep sea microbiology. Ann. Rev. Microbiol. 38:487–514.Google Scholar
  101. Jarrell, K. F., and M. L. Kalmokoff. 1988. Nutritional requirements of the methanogenic archaebacteria. Can. J. Microbiol. 34:557–576.Google Scholar
  102. Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1990. Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Ecol. 73:339–344.Google Scholar
  103. Jewell, W. J., M. S. Switzenbaum, and J. W. Morris. 1981. Municipal wastewater treatment with the anaerobic attached microbial film expanded bed process. J. Water Poll. Cont. Fed. 4:482–490.Google Scholar
  104. Jones, W.J.,D.P.N. Jr., and W. B. Whitman. 1987. Methanogens and the diversity of archaebacteria. Microbiol. Rev. 51:135–177.PubMedGoogle Scholar
  105. Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe. 1983. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrother- mal vent. Arch. Microbiol. 136:354–261.Google Scholar
  106. Jones, W. J., W. B. Whitman, R. D. Fields, and R. S. Wolfe. 1983. Growth and plating efficiency of methanococci on agar media. Appl. Environ. Microbiol. 46:220–226.PubMedGoogle Scholar
  107. Kaesler, B., and P. Schönheit. 1989. The sodium cycle in methanogenesis. Eur. J. Biochem. 186:309–316.PubMedGoogle Scholar
  108. Kalmokoff, M. L., K. F. Jarrell, and S. F. Koval. 1988. Isolation of flagella from the archaebaeterium Methanococcus voltae by phase separation with Triton X-114. J. Bacteriol. 170:1752–1758.PubMedGoogle Scholar
  109. Kamagata, Y., and E. Mikami. 1991. Isolation and characterization of a novel thermophilic Methanosaeta strain. Int. J. Syst. Bacteriol. 41:191–196.Google Scholar
  110. Kane, M. D., J. M. Stromley, L. Raskin, and D. A. Stahl. 1991. Molecular analysis of the phylogenetic diversity and ecology of sulfidogenic and methanogenic biofilm communities, Abstr. Q-195, p. 309. Abstr. Annu. Meet. Am. Soc. Microbiol. 1991.Google Scholar
  111. Kanodia, S., and M. F. Roberts. 1983. Methanophosphagen: unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 80:5217–5221.PubMedGoogle Scholar
  112. Kemp, C. W., M. A. Curtis, S. A. Robrish, and W. H. Bowen. 1983. Biogenesis of methane in primate dental plaque. FEBS Letters. 155:61–64.PubMedGoogle Scholar
  113. Khalil, M. A. K., and R. A. Rasmussen. 1990. Constraints on the global sources of methane and an analysis of recent budgets. Tellus. 42B:229–236.Google Scholar
  114. Kiene, R. P. 1990. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl. Environ. Microbiol. 56:3292–3297.PubMedGoogle Scholar
  115. Kiene, R. P. 1991. Production and comsumption of methane in aquatic systems. In Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes, J. E. Rogers and W. B. Whitman (eds.), pp. 111–146. American Society for Microbiology, Washington D. C.Google Scholar
  116. Kiener, A., H. König, J. Winter, and T. Leisinger. 1987. Purification and use of Methanobacterium wolfei pseudomurein endopeptidase for lysis of Methanobacterium thermoautotrophicum. J. Bacteriol. 169:1010–1016.PubMedGoogle Scholar
  117. Kiener, A., and T. Leisinger. 1983. Oxygen sensitivity of methanogenic bacteria. Syst. Appl. Microbiol. 4:305–312.PubMedGoogle Scholar
  118. Kiener, A., W. H. Orme-Johnson, and C. T. Walsh. 1988. Reversible conversion of coenzyme F420 to the 8-OH-AMP and 8-OH-GMP esters, F390-A and F390-G, on oxygen exposure and reestablishment of anaerobiosis in Methanobacterium thermoautotrophicum. Arch. Microbiol. 150:249–253.PubMedGoogle Scholar
  119. King, G. M. 1984. Utilization of hydrogen, acetate, and “noncompetitive” substrates by methanogenic bacteria in marine sediments. Geomicrobiol. J. 3:275–306.Google Scholar
  120. King, G. M., and M. J. Klug. 1982. Glucose metabolism in sediments of a eutrophic lake: tracer analysis of uptake and product formation. Appl. Environ. Microbiol. 44:1308–1317.PubMedGoogle Scholar
  121. Kirby, T. W., J. R. Lancaster Jr., and I. Fridovich. 1981. Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch. Biochem. Biophys. 210:140–148.PubMedGoogle Scholar
  122. König, H., E. Nusser, and K. O. Stetter. 1985. Glycogen in Methanolobus and Methanococcus. FEMS Microbiol. Lett. 28:265–269.Google Scholar
  123. Kreisl, P., and O. Kandier. 1986. Chemical structure of the cell wall polymer of Methanosarcina. System. Appl. Microbiol. 7:293–299.Google Scholar
  124. Kristijansson, J. K., P. Schönheit, and R. K. Thauer. 1982. Different Ks valuse for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch. Microbiol. 131:278–282.Google Scholar
  125. Krone, U. E., K. Laufer, R. K. Thauer, and H. P. C. Hogenkamp. 1989. F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry 28:10061–10065.PubMedGoogle Scholar
  126. Krone, U.E., and R. K. Thauer. 1992. Dehalogenation of thrichlorofluoromethane (CFC-11) by Methanosarcina barken. FEMS Microbiol. Lett. 90:201–204.Google Scholar
  127. Krone, U. E., R. K. Thauer, and H. P. C. Hogenkamp. 1989. Reductive dechlorination of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28:4908–4914.Google Scholar
  128. Krzycki, J. A., W. R. Kenealy, M. J. DeNiro, and J. G. Zeikus. 1987. Stable isotope fractionation by Methanosarcina barkeri during methanogenesis from acetate, methanol, or carbon dioxide. Appl. Environ. Microbiol. 53:2597–2599.PubMedGoogle Scholar
  129. Krzycki, J. A., R. H. Wolkin, and J. G. Zeikus. 1982. Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri. J. Bacteriol. 149:247–254.PubMedGoogle Scholar
  130. Kuhn, W., K. Fiebig, H. Hippe, R. A. Mah, B. A. Huser, and G. Gottschalk. 1983. Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett. 20:407–410.Google Scholar
  131. Kurr, M., R. Huber, H. König, H. W. Jannasch, H. Fricke, A. Trincone, J. K. Kristjansson, and K. O. Stetter. 1991. Methanopyrus kandieri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch. Microbiol. 156:239–247.Google Scholar
  132. Lajoie, S. F., S. Bank, T. L. Miller, and M. J. Wolin. 1988. Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54:2723–2727.PubMedGoogle Scholar
  133. Lee, M. J., P. J. Schreurs, A. C. Messer, and S. H. Zinder. 1987. Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Cur. Microbiol. 15:337–341.Google Scholar
  134. Lee, M. J., and S. H. Zinder. 1988. Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture. Arch. Microbiol. 150:513–518.Google Scholar
  135. Lee, M. J., and S. H. Zinder. 1988. Hydrogen partial pressures in a thermophilic acetate- oxidizing methanogenic coculture. Appl. Environ. Microbiol. 54:1457–1461.PubMedGoogle Scholar
  136. Lee, M. J., and S. H. Zinder. 1988. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 54:124–129.PubMedGoogle Scholar
  137. Lettinga, G., A. F. M. van Velsen, S. W. Hobma, W. de Zeeuw, and A. Klapwijk. 1980. Use of the Upflow Anaerobic Sludge Blanker (USB) reactor, concept for wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 22:699–734.Google Scholar
  138. Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 40:415–450.Google Scholar
  139. Lobo, A. L., and S. H. Zinder. 1990. Nitrogenase in the methanogenic archaebacterium Methanosarcina barkeri strain 227. J. Bacteriol. 172:6789–6796.PubMedGoogle Scholar
  140. Lovley, D. J., and M. J. Klug. 1982. Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Appl. Environ. Microbiol. 43:552–560.PubMedGoogle Scholar
  141. Lovley, D. R. 1985. Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl. Environ. Microbiol. 49:1530–1531.PubMedGoogle Scholar
  142. Lovley, D. R., D. F. Dwyer, and M. J. Klug. 1982. Kinetic analysis of competition between sultafe reducers and methanogens for hydrogen in sediments. Appl. Environ. Microbiol. 43:1373–1379.PubMedGoogle Scholar
  143. Lovley, D. R., R. C. Greening, and J. G. Ferry. 1984. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl. Environ. Microbiol. 48:81–87.PubMedGoogle Scholar
  144. Lovley, D. R., and D. J. Lonergan. 1990. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron reducing organism, GS-15. Appl. Environ. Microbiol. 56:1858–1864.PubMedGoogle Scholar
  145. Lovley, D. R., and E. J. P. Phillips. 1987. Competitive mechanisms of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53:2636–2641.PubMedGoogle Scholar
  146. Lovley, D. R., E. J. P. Phillips, and D. J. Lonergan. 1989. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron and manganese by Alteramonas putrifaciens. Appl. Environ. Microbiol. 55:700–706.Google Scholar
  147. Lovley, D. R., J. F. Stolz, J. G. L. Nord, and E. J. P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254.Google Scholar
  148. Macario, A. J. L., and E. Conway de Macario. 1983. Antigenic fingerprinting of methanogenic bacteria with polyclonal antibody probes. Syst. Appl. Microbiol. 4:451–458.PubMedGoogle Scholar
  149. Macario, A. J. L., and E. Conway de Macario. 1988. Quantitative immunological analysis of the methanogenic flora of digestors reveals a considerable diversity. Appl. Environ. Microbiol. 54:79–86.PubMedGoogle Scholar
  150. Macario, A. J. L., E. Conway de Macario, U. Ney, S. Schoberth, and H. Sahm. 1989. Shifts in methanogenic subpopulations measured with antigenic probes in a fixed-bed loop anaerobic bioreactor. Appl. Environ. Microbiol. 55:1996–2001.PubMedGoogle Scholar
  151. Macario, A. J. L., F. A. Visser, J. B. van Lier, and E. Conway de Macario. 1991. Topography of methanogenic subpopulations in a microbial consortium adapting to thermophilic conditions. J. Gen. Microbiol. 137:2179–2189.Google Scholar
  152. Mackie, R. I., and M. P. Bryant. 1981. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60°C. Appl. Environ. Microbiol. 41:1363–1373.PubMedGoogle Scholar
  153. MacLeod, F. A., S. R. Guiot, and J. W. Costerton. 1990. Layered structure of bacterial aggregates in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56:1598–1607.PubMedGoogle Scholar
  154. Magingo, F. S. S., and C. K. Stumm. 1991. Nitrogen fixation by Methanobacterium formicicum.‘. FEMS Microbiol. Lett. 81:273–278.Google Scholar
  155. Magot, M., O. Possot, N. Souillard, M. Henriquet, and L. Sibold. 1986. Structure and expression of nif (nitrogen fixation) genes in methanogens. In Biology of Anaerobic Bacteria, H. C. Dubourgier et al. (eds.), pp. 193–199. Elsevier Science Publishers B.V., Amsterdam.Google Scholar
  156. Mah, R. A., M. R. Smith, and L. Baresi. 1977. Isolation and characterization of a gas vacuolated Methanosarcina, Abstr. I–32, p 160. Abstr. 77th Annu. Meet. Am Soc. Microbiol. 1977.Google Scholar
  157. Mathrani, I. M., D. R. Boone, R. A. Mah, G. E. Fox, and P. P. Lau. 1988. Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int. J. System. Bacteriol. 38:139–142.Google Scholar
  158. McCarty, P. L. 1964. Anaerobic waste treatment fundamentals. I. Chemistry and microbiology. Public Works 95:107–112.Google Scholar
  159. Mclnerney, M. J., and P. S. Beaty. 1988. Anaerobic community structure from a nonequilibrium thermodynamic perspective. Can. J. Microbiol. 34:487–493.Google Scholar
  160. Mclnerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41:1029–1039.Google Scholar
  161. Mclnerney, M. J., M. P. Bryant, and N. Pfennig. 1979. Anaerobic bacterium that degrades fatty acids in association with methanogens. Arch. Microbiol. 122:129–135.Google Scholar
  162. Meile, L., U. Jenal, D. Studer, M. Jordan, and T. Leisinger. 1989. Characterization of ¥M1, a virulent phage of Methanobacterium thermoautrophicum Marburg. Arch. Microbiol. 152:105–110.Google Scholar
  163. Migas, J., K. L. Anderson, D. L. Cruden, and A. J. Markovetz. 1988. Chemotaxis in Methanospirillum hungatei. Appl. Environ. Microbiol. 55:264–265.Google Scholar
  164. Mikesell, M. D., and S. A. Boyd. 1986. Complete reductive dechlorination of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 52:861–865.PubMedGoogle Scholar
  165. Mikesell, M. D., and S. A. Boyd. 1990. Dechlorination of chloroform by Methanosarcina strains. Appl. Environ. Microbiol. 56:1198–1201.PubMedGoogle Scholar
  166. Miller, T. L. 1991. Biogenic sources of methane. In Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes, J. E. Rogers and W. B. Whitman (eds.), pp. 175–188. American Society for Microbiology, Washington D. C.Google Scholar
  167. Miller, T. L., and M. J. Wolin. 1985. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141:116–122.PubMedGoogle Scholar
  168. Min, H., and S. H. Zinder. 1989. Kinetics of acetate utilization by two thermophilic acetotrophic methanogens: Methanosarcina sp. strain CALS-1 and Methanothrix sp. strain CALS-1. Appl. Environ. Microbiol. 55:488–491.PubMedGoogle Scholar
  169. Mountfort, D. O., and R. A. Asher. 1978. Changes in proportion of acetate and carbon dioxide used as methane precursors during the anaerobic digestion of bovine waste. Appl. Environ. Microbiol. 35:648–654.PubMedGoogle Scholar
  170. Mountfort, D. O., W. J. Brulla, L. R. Krumholz, and M. P. Bryant. 1984. Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogeic ecosystems. Int. J. System. Bacteriol. 34:216–217.Google Scholar
  171. Müller, M. 1988. Energy metabolism of protozoa without mitochondria. Ann. Rev. Microbiol. 42:465–88.Google Scholar
  172. Müller, V., M. Blaut, and G. Gottschalk. 1987. Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri. Eur. J. Biochem. 162:461–466.PubMedGoogle Scholar
  173. Murray, P. A., and S. H. Zinder. 1987. Polysaccharide reserve material in the acetotrophic methanogen Methanosarcina thermophila strain TM-1: accumulation and mobilization. Arch. Microbiol. 147:109–116.Google Scholar
  174. Murray, W. D., and L. van den Berg. 1981. Effects of nickel, cobalt, and molybdenum on performance of methanogenic fixed-film reactors. Appl. Environ. Microbiol. 42:502–505.PubMedGoogle Scholar
  175. Nelson, D. R., and J. G. Zeikus. 1974. Rapid method for the radioisotopic analysis of gaseous end products of anaerobic metabolism. Appl. Microbiol. 28:258–261.PubMedGoogle Scholar
  176. Nozhevnikova, A. N., and V. I. Chudina. 1985. Morphology of the thermophilic acetate methane bacterium Methanothrix thermoacetophila sp. nov. Microbiology (Eng. trans). 50:756–760.Google Scholar
  177. O’Brien, J. M., R. H. Wolkin, T. T. Moench, J. B. Morgan, and J. G. Zeikus. 1984. Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J. Bacteriol. 158:373–375.PubMedGoogle Scholar
  178. Odelson, D. A., and J. A. Breznak. 1983. Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl. Environ. Microbiol. 45:1602–1613.PubMedGoogle Scholar
  179. Ohtsubo, S., K. Demizu, S. Kohno, I. Miura, T. Ogawa, and H. Fukuda. 1992. Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii. Appl. Environ. Microbiol. 58:703–705.PubMedGoogle Scholar
  180. Oremland, R. S. 1988. Biogeochemistry of methanogenic bacteria. In Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 641–706. Wiley Interscience, New York.Google Scholar
  181. Oremland, R. S., and C. W. Culbertson. 1992. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 356:421–423.Google Scholar
  182. Oremland, R. S., R. P. Kiene, I. Mathrani, M. J. Whiticar, and D. R. Boone. 1989. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl. Environ. Microbiol. 55:994–1002.PubMedGoogle Scholar
  183. Oremland, R. S., L. M. Marsh, and S. Polcin. 1982. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature 296:143–145.Google Scholar
  184. Oremland, R. S., and S. Polcin. 1982. Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl. Environ. Microbiol. 44:1270–1276.PubMedGoogle Scholar
  185. Patel, G. B., and G. D. Sprott. 1990. Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int. J. Syst. Bacteriol. 40:79–82.Google Scholar
  186. Paterek, J. R., and P. H. Smith. 1988. Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int. J. Syst. Bacteriol. 38:122–123.Google Scholar
  187. Patterson, J. A., and R. B. Hespell. 1979. Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri. Cur. Microbiol. 3:79–83.Google Scholar
  188. Pearman, G. I., and P. J. Fräser. 1988. Sources of increased methane. Nature 332:489–490.Google Scholar
  189. Pellerin, P., B. Gruson, G. Premier, G. Albagnac, and P. Debeirer. 1987. Glycogen in Methanothrix. Arch. Microbiol. 145:377–381.Google Scholar
  190. Petersen, S. P., and B. K. Ahring. 1991. Acetate oxidation in a thermophilic anaerobic sewage sludge digestor: the importance of non-acetoclastic methanogenesis from acetate. FEMS Microbiol. Ecol. 86:149–158.Google Scholar
  191. Pfeffer, J. T. 1974. Temperature effects on anaerobic fermentation of domestic refuse. Biotechnol. Bioeng. 16:771–787.Google Scholar
  192. Phelps, T. J., R. Conrad, and J. G. Zeikus. 1985. Sulfate dependent interspecies H2 transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during coculture metabolism of acetate or methanol. Appl. Environ. Microbiol. 50:589–594.PubMedGoogle Scholar
  193. Phipps, B. M., A. Hoffmann, K. O. Stetter, and W. Baumeister. 1991. A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J. 10:1711–1722.PubMedGoogle Scholar
  194. Platen, H., and B. Schink. 1987. Methanogenic degradation of acetone by an enrichment culture. Arch. Microbiol. 149:136–141.PubMedGoogle Scholar
  195. Postgate, J. R. 1982. The Fundamentals of Nitrogen Fixation. Cambridge University Press, London.Google Scholar
  196. Quensen III, J. F., S. A. Boyd, and J. M. Tiedje. 1990. Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl. Environ. Microbiol. 56:2360–2369.PubMedGoogle Scholar
  197. Rajagopal, B. S., N. Belay, and L. Daniels. 1988. Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol. Ecol. 53:153–158.Google Scholar
  198. Rimkus, R. R., J. M. Ryan, and E. J. Cook. 1982. Full-scale thermophilic digestion at the west-southwest sewage treatment works, Chicago, IL. J. Wat. Poll. Cont. Fed. 54:1447–1457.Google Scholar
  199. Robertson, D. E., D. Noll, M. F. Roberts, J. A. G. F. Menaia, and D. R. Boone. 1990. Detection of the osmoregulator betaine in methanogens. Appl. Environ. Microbiol. 56:563–565.PubMedGoogle Scholar
  200. Robertson, D. E., M. F. Roberts, N. Belay, K. O. Stetter, and D. R. Boone. 1990. Occurrence of β-glutamate, a novel osmolyte, in marine methanogenic bacteria. Appl. Environ. Microbiol. 56:1504–1508.PubMedGoogle Scholar
  201. Robinson, J. A., and J. M. Tiedje. 1982. Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment. Appl. Environ. Microbiol. 44:1374–1384.PubMedGoogle Scholar
  202. Robinson, J. A., and J. M. Tiedje. 1984. Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137:26–32.Google Scholar
  203. Robinson, R. W., D. E. Akin, R. A. Nordstedt, M. V. Thomas, and H. C. Aldrich. 1984. Light and electron microscopic examinations of methane-producing biofilms from anaerobic fixed bed reactors. Appl. Environ. Microbiol. 48:127–136.PubMedGoogle Scholar
  204. Robinson, R. W., and G. W. Erdos. 1985. Immuno-electron microscopic identification of Methanosarcina spp. in anaerobic digester fluid. Can. J. Microbiol. 31:839–844.Google Scholar
  205. Rogers, J. E., and W. B. Whitman. 1991. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology, Washington D. C.Google Scholar
  206. Roy, F., E. Samain, H. C. Dubourguier, and G. Albagnac. 1986. Syntrophomnas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch. Microbiol. 145:142–147.Google Scholar
  207. Rudnick, H., S. Hendrich, U. Pilatus, and K.-H. Blotevogel. 1990. Phosphate accumulation and the occurrence of polyphosphates and cyclic 2,3-diphosphoglycrate in Methanosarcina frisia. Arch. Microbiol. 154:584–588.Google Scholar
  208. Russell, J. B. 1991. Intracellular pH of acid tolerant ruminal bacteria. Appl. Environ. Microbiol. 57:3383–3384.PubMedGoogle Scholar
  209. Russell, J. B., and H. J. Strobel. 1989. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 55:1–6.PubMedGoogle Scholar
  210. Sandbeck, K. A., and D. M. Ward. 1982. Temperature adaptations in the terminal processes of anaerobic decomposition of Yellowstone National Park and Icelandic Hot Spring microbial mats. Appl. Environ. Microbiol. 44:844–851.PubMedGoogle Scholar
  211. Sandman, K., J. A. Krzycki, B. Dobrinski, R. Lurz, and J. N. Reeve. 1990. HMf, a DNA-binding protein isolated from the hyperthermophilic archeon Methanothermus fervidus is most closely related to histones. Proc. Natl. Acad. Sci. USA 87:5788–5791.PubMedGoogle Scholar
  212. Sansone, F. J., and C. S. Martens. 1981. Methane production from acetate and associated methane fluxes from anoxic coastal sediments. Science 211:707–709.PubMedGoogle Scholar
  213. Sastry, M. V. K., D. E. Robertson, J. A. Moynihan, and M. F. Roberts. 1992. Enzymatic degradation of cyclic 2,2-diphosphoglycerate to 2.3-diphosphoglycerate in Methanobacterium thermoautotrophicum. Biochemistry 31:2926–2935.PubMedGoogle Scholar
  214. Schauer, N. L., and J. G. Ferry. 1980. Metabolism of formate in Methanobacerium formicicum. J. Bacteriol. 142:800–807.PubMedGoogle Scholar
  215. Scherer, P. A., and H. P. Bochem. 1983. Ultrastructual investigation of 12 Methanosarcina and related species grown on methanol for occurrence of polyphosphatelike inclusions. Can. J. Microbiol. 29:1190–1199.Google Scholar
  216. Schink, B. 1988. Principles and limits of anaerobic degradation: environmental and technical aspects. In Biology of anaerobic bacteria, A. J. B. Zehnder (ed.), pp. 771–846. Wiley Interscience, New York.Google Scholar
  217. Schink, B., and J. G. Zeikus. 1980. Microbial methanol formation: a major end product of pectin metabolism. Cur. Microbiol. 4:387–389.Google Scholar
  218. Schönheit, P., J. K. Kristjansson, and R. K. Thauer. 1982. Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Arch. Microbiol. 132:285–288.Google Scholar
  219. Schraa, G., and W. J. Jewell. 1984. High rate conversions of soluble organics with a thermophilic anaerobic attached film expanded bed. J. Wat. Poll. Cont. Fed. 56:226–232.Google Scholar
  220. Seely, R. J., and D. E. Fahrney. 1984. Levels of cyclic-2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum during phosphate limitation. J. Bacteriol. 160:50–54.PubMedGoogle Scholar
  221. Scitz, H.-J., B. Schink, N. Pfennig, and R. Conrad. 1990. Energetics of syntrophic ethanol oxidation in defined chemostat cocultures. 1. Energy requirement for H2 production and H2 oxidation. Arch. Microbiol. 155:82–88.Google Scholar
  222. Shelton, D. R., and J. M. Tiedje. 1984. General method for determining anaerobic biodegradation potential. Appl. Environ. Microbiol. 47:850–857.PubMedGoogle Scholar
  223. Sment, K. A., and J. Konisky. 1989. Chemotaxis in the Archaebacterium Methanococcus voltae. J. Bacteriol. 171:2870–2872.PubMedGoogle Scholar
  224. Smith, M. R., and R. A. Mah. 1978. Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36: 870–879.PubMedGoogle Scholar
  225. Smith, P. H., and R. A. Mah. 1966. Kinetics of acetate metabolism during sludge digestion. Appl. Microbiol. 14:368–371.PubMedGoogle Scholar
  226. Smolenski, W. J., and J. A. Robinson. 1988. In situ rumen hydrogen concentrations in steers fed eight times daily, measured using a mercury reduction detector. FEMS Microbiol. Ecol. 53:95–100.Google Scholar
  227. Sowers, K. R., S. F. Baron, and J. G. Ferry. 1984. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971–978.PubMedGoogle Scholar
  228. Sowers, K. R., and R. P. Gunsalus. 1988. Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J. Bacteriol. 170:998–1002.PubMedGoogle Scholar
  229. Sparling, R., and L. Daniels. 1990. Regulation of formate dehydrogenase activity in Methanococcus thermolithotrophicus. J. Bacteriol. 172:1464–1469.PubMedGoogle Scholar
  230. Speece, R. E., G. F. Parkin, and D. Gallagher. 1983. Nickel stimulation of anaerobic digestion. Water Res. 17:677–683.Google Scholar
  231. Sprott, G. D., M. Meloche, and J. C. Richards. 1991. Proportions of diether macrocyclic diether and tetraether lipids in Methanococcus jannaschii. J. Bacteriol. 173:3907–3910.PubMedGoogle Scholar
  232. Stahl, D. A., B. Flesher, H. R. Mansfield, and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54:1079–1084.PubMedGoogle Scholar
  233. Stams, A. J. M., K. C. R. Grolle, C. T. J. J. Frijters, and J. B. van Lier. 1992. Enrichment of thermophilic propionate-oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum. Appl. Environ. Microbiol. 58:346–352.PubMedGoogle Scholar
  234. Steffan, R. J., and R. M. Atlas. 1991. Polymerase chain reaction: applications in environmental microbiology. Ann. Rev. Microbiol. 45:137–161.Google Scholar
  235. Stetter, K. O., G. Fiala, G. Huber, R. Huber, and A. Segerer. 1990. Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75:117–124.Google Scholar
  236. Stetter, K. O., M. Thomm, J. Winter, G. Wildgruber, H. Huber, W. Zillig, D. Jane Covic, H. König, P. Palm, and S. Wunderl. 1981. Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl. Bakt. Hyg., I. Abt. Orig.C. 2:166–178.Google Scholar
  237. Strayer, R. F., and J. M. Tiedje. 1978. Application of the fluorescent-antibody technique to the study of a methanogenic bacterium in lake sediments. Appl. Environ. Microbiol. 35:192–198.PubMedGoogle Scholar
  238. Suflita, J. M., A. Horowitz, D. R. Shelton, and J. M. Tiedje. 1982. Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218:1115–1117.PubMedGoogle Scholar
  239. Sundaram, T. K. 1986. Physiology and growth of thermophilic bacteria. In Thermophiles: General, Molecular, and Applied Microbiology, T. D. Brock (ed.), pp. 75–106. Wiley-Interscience, New York.Google Scholar
  240. Switzenbaum, M. S. 1983. Anaerobic treatment of wastewater: recent developments. ASM News. 49:532–536.Google Scholar
  241. Taylor, B. F., and R. S. Oremland. 1979. Depletion of adenosine triphosphate in Desulfovibrio by oxyanionsof group VI elements. Cur. Microbiol. 3:101–103.Google Scholar
  242. Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.PubMedGoogle Scholar
  243. Thiele, J. H., M. Chartrain, and J. G. Zeikus. 1988. Control of interspecies electron flow during anaerobic digestion: role of floe formation in syntrophic methanogenesis. Appl. Environ. Microbiol. 54:10–19.PubMedGoogle Scholar
  244. Thiele, J. H., and J. G. Zeikus. 1987. The anion-exchange substrate shuttle process: A new approach to two-stage biomethanation of organic and toxic wastes. Biotechnol. Bioeng. 31:521–535.Google Scholar
  245. Thiele, J. H., and J. G. Zeikus. 1988. Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in floes. Appl. Environ. Microbiol. 54:20–29.PubMedGoogle Scholar
  246. Thomas, F. E., J. J. Olivero, E. J. Jensen, W. Schroeder, and O. B. Toon. 1989. Relation between increasing methane and the presence of ice clouds at the mesopause. Nature 338:490–492.Google Scholar
  247. Tyler, S. C. 1991. The global methane budget. In Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes, J. E. Rogers and W. B. Whitman (eds.), pp. 7–38. American Society for Microbiology, Washington D. C.Google Scholar
  248. van Alebeek, G.-J. W. M., C. Klaassen, J. T. Keltjents, C. v. d. Drift, and G. D. Vogels. 1991. ATP synthesis from 2,3-diphosphoglycerate by cell-free extract of Methanobacterium thermoutotrophicum (strain ΔH). Arch. Microbiol. 156:491–496.Google Scholar
  249. van Bruggen, J. J. A., C. K. Stumm, and G. D. Vogels. 1983. Symbiosis of methanogenic bacteria and spropelic protozoa. Arch. Microbiol. 136:89–95.Google Scholar
  250. van Bruggen, J. J. A., K. B. Zwart, J. G. F. Hermans, E. M. van Hove, C. K. Stumm, and G. D. Vogels. 1986. Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus quennerstedt. Arch. Microbiol. 144:367–374.Google Scholar
  251. van den Berg, L. 1984. Developments in methanogenesis from industrial wastewater. Can. J. Microbiol. 30:975–990.Google Scholar
  252. Varel, V. H., A. G. Hasimoto, and Y. R. Chen. 1980. Effect of temperature and retention time on methane production from beef cattle waste. Appl. Environ. Microbiol. 40:217–222.PubMedGoogle Scholar
  253. Varel, V. H., H. R. Isaacson, and M. P. Bryant. 1977. Thermophilic methane production from cattle waste. Appl. Environ. Microbiol. 33:298–307.PubMedGoogle Scholar
  254. Verrier, D., B. Mortier, H. C. Dubourguier, and G. Albagnac. 1988. Adhesion of anaerobic bacteria to inert supports and development of methanogenic biofilms. In Anaerobic Digestion 1988, E. R. Hall and P. N. Hobson (eds.), pp. 61–69. Pergammon Press, Oxford.Google Scholar
  255. Visser, F. A., J. B. van Lier, V. Macario, and E. Conway de Macario. 1991. Diversity and population dynamics of methanogenic bacteria in a granular consortium. Appl. Environ. Microbiol. 57:1728–1734.PubMedGoogle Scholar
  256. Vogel, T. M., C. S. Criddle, and P. L. McCarty. 1987. Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21:722–736.PubMedGoogle Scholar
  257. Vogel, T. M., and P. L. McCarty. 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49:1080–1083.PubMedGoogle Scholar
  258. Vogels, G. D., W. F. Hoppe, and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40:608–612.PubMedGoogle Scholar
  259. Wagener, S., C. F. Bardele, and N. Pfennig. 1990. Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum. Arch. Microbiol. 153:496–501.Google Scholar
  260. Ward, D. M., W. Weiler, and M. M. Bateson. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65.PubMedGoogle Scholar
  261. Warford, A. L., D. R. Kosiur, and P. R. Doose. 1979. Methane production in Santa Barbara Basin sediments. Geomicrobiol. J. 1:117–137.Google Scholar
  262. Weimer, P. J., and J. G. Zeikus. 1977. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and the presence of Methanobacterium thermo-autotrophicum. Appl. Environ. Microbiol. 33:289–297.PubMedGoogle Scholar
  263. Westermann, P., B. K. Ahring, and R. A. Man. 1989. Temperature compensation in Methanosarcina barken by modulation of hydrogen and acetate affinity. Appl. Environ. Microbiol. 55:1262–1266.PubMedGoogle Scholar
  264. Whitman, W. B., S. Sohn, S. Kuk, and R. Xing. 1987. Role of amino acids and vitamins in nutrition of mesophilic Methanococcus spp. Appl. Environ. Microbiol. 53:2373–2378.PubMedGoogle Scholar
  265. Widdel, F. 1986. Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl. Environ. Microbiol. 51:1056–1062.PubMedGoogle Scholar
  266. Widdel, F. 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In Biology of anaerobic microorganisms, A. J. B. Zehnder (ed.), pp. 469–586. Wiley Interscience, New York.Google Scholar
  267. Widdel, F., and R. S. Wolfe. 1989. Expression of secondary alcohol dehydrogenase in methnogenic bacteria and purification of the F420-specific enzyme from Methanogenium thermophilum strain TCI. Arch. Microbiol. 152:322–328.Google Scholar
  268. Wiegant, W. M., and A. W. A. de Man. 1986. Granulation of biomass in thermophilic anaerobic sludge blanket reactors treating acidified wastewaters. Biotechnol. Bioeng. 28:718–727.PubMedGoogle Scholar
  269. Wildenaurer, F. X., and J. Winter. 1986. Fermentation of isoleucine and arginine by pure and syntrophic cultures of Clostridum sporogenes. FEMS Microbiol. Ecol. 38:373–379.Google Scholar
  270. Williams, R. T., and R. L. Crawford. 1984. Methane production in Minnesota peatlands. Appl. Environ. Microbiol. 47:1266–1271.PubMedGoogle Scholar
  271. Williams, R. T., and R. L. Crawford. 1985. Methanogenic bacteria, including an acid-tolerant strain, from peatlands. Appl. Environ. Microbiol. 50:1542–1544.PubMedGoogle Scholar
  272. Winfrey, M. R., and J. G. Zeikus. 1977. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater lake sediments. Appl. Environ. Microbiol. 33: 275–281.PubMedGoogle Scholar
  273. Winfrey, M. R., and J. G. Zeikus. 1979. Anaerobic metabolism of immediate methane precursors in Lake Mendota. Appl. Environ. Microbiol. 37:244–253.PubMedGoogle Scholar
  274. Winter, J., and G. Zellner. 1990. Thermophilic anaerobic degradation of carbohydrates—metabolic properties of microorganisms from the different phases. FEMS Microbiol. Rev. 75:139–154.Google Scholar
  275. Winter, J. U., and R. S. Wolfe. 1980. Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbiol. 124:73–79.PubMedGoogle Scholar
  276. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221–271.PubMedGoogle Scholar
  277. Wolin, M. J., and T. L. Miller. 1982. Interspecies hydrogen transfer: 15 years later. ASM News 48:561–565.Google Scholar
  278. Wood, H. G., and J. E. Clark. 1988. Biological aspects of inorganic polyphosphates. Ann. Rev. Biochem. 57:235–260.PubMedGoogle Scholar
  279. Young, J. C., and P. L. McCarty. 1969. The anaerobic filter for waste treatment. J. Wat. Pol. Cont. Fed. 47:R160–R171.Google Scholar
  280. Zabel, H. P., H. Konig, and J. Winter. 1985. Emended description of Methanogenium thermophilicum, Rivard and Smith, and assignment of new isolates to this species. Syst. Appl. Microbiol. 6:72–78.Google Scholar
  281. Zeeman, G., T. J. M. Vens, M. E. Koster-Treffers, and G. Lettinga. 1988. Start-up of low temperature digestion of manure. In Anaerobic Digestion 1988, E. R. Hall and P. N. Hobson (eds.), pp. 397–406. Pergamon Press, Oxford, England.Google Scholar
  282. Zehnder, A. J. B. 1988. Biology of anaerobic microorganisms. Wiley, New York.Google Scholar
  283. Zehnder, A. J. B., B. Huser, and T. D. Brock. 1979. Measuring radioactive methane with the liquid scintillation counter. Appl. Environ. Microbiol. 37: 897–899.PubMedGoogle Scholar
  284. Zeikus, J. G. 1977. The biology of methanogenic bacteria. Bacteriol. Rev. 41:514–541.PubMedGoogle Scholar
  285. Zeikus, J. G., A. Ben-Bassat, and P. W. Hegge. 1980. Microbiology of methanogenesis in thermal, volcanic environments. J. Bacteriol. 143:432–440.PubMedGoogle Scholar
  286. Zeikus, J. G., and M. R. Winfrey. 1976. Temperature limitation of methanogenesis in aquatic sediments. Appl. Environ. Microbiol. 31:99–107.PubMedGoogle Scholar
  287. Zeikus, J. G., and R. S. Wolfe. 1972. Methanobacterium thermoautotrophicus sp. no., an anaerobic, autotrophic, extreme thermophile. J. Bacteriol. 109:707–713.PubMedGoogle Scholar
  288. Zellner, G., M. Geveke, E. Conway de Macario, and H. Diekmann. 1991. Population dynamics of biofilm development during start-up of a butyrate-degrading fluidized-bed reactor. Appl. Microbiol. Biotechnol. 36:404–409.Google Scholar
  289. Zellner, G., and J. Winter. 1987. Secondary alcohols as hydrogen donors for CO2-reduction by methanogens. FEMS Microbiol. Lett. 44:323–328.Google Scholar
  290. Zhilina, T. N., and G. A. Zavarzin. 1987. Methanosarcina vacuolata sp. nov., a vacuolated Methanosarcina. Int. J. System. Bacteriol. 37:281–283.Google Scholar
  291. Zhilina, T. N., and G. A. Zavarzin. 1990. Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev. 87:315–322.Google Scholar
  292. Zimmermann, P. R., J. P. Greenberg, S. O. Wandiga, and P. J. Crutzen. 1982. Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218:563–565.Google Scholar
  293. Zindel, U., W. Freudenberg, M. Rieth, J. R. Andreesen, J. Schnell, and F. Widdel. 1988. Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Arch. Microbiol. 150:254–266.Google Scholar
  294. Zinder, S. H. 1986. Patterns of carbon flow from glucose to methane in a thermophilic anaerobic bioreactor. FEMS Microbiol. Ecol. 38:243–250.Google Scholar
  295. Zinder, S. H. 1986. Thermophilic waste treatment systems. In Thermophiles: general, molecular, and applied biology, T. D. Brock (ed.), pp. 257–277. Wiley, New York.Google Scholar
  296. Zinder, S. H. 1990. Conversion of acetic acid to methane by thermophiles. FEMS Microbiol. Rev. 75:125–138.Google Scholar
  297. Zinder, S. H., T. Anguish, and S. C. Cardwell. 1984. Selective inhibition by 2-bromoe-thanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor. Appl. Environ. Microbiol. 47:1343–1345.PubMedGoogle Scholar
  298. Zinder, S. H., T. Anguish, and A. L. Lobo. 1987. Isolation and characterization of a thermophilic acetotrophic strain of Methanothrix. Arch. Microbiol. 146:315–322.Google Scholar
  299. Zinder, S. H., and T. D. Brock. 1978. Methane, carbon dioxide, and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. Appl. Environ. Microbiol. 35:344–352.PubMedGoogle Scholar
  300. Zinder, S. H., S. C. Cardwell, T. Anguish, M. Lee, and M. Koch. 1984. Methanogenesis in a thermophilic (58°C) anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl. Environ. Microbiol. 47:796–807.PubMedGoogle Scholar
  301. Zinder, S. H., and A. Elias. 1985. Growth substrate effects on acetate and methanol catabolism in Methanosarcina thermophila strain TM-1. J. Bacteriol. 163:317–323.PubMedGoogle Scholar
  302. Zinder, S. H., and M. Koch. 1984. Non-aceticlastic methanogenesis from acetate: Acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138:263–272.Google Scholar
  303. Zinder, S. H., and R. A. Man. 1979. Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl. Environ. Microbiol. 38:996–1008.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Stephen H. Zinder

There are no affiliations available

Personalised recommendations