Mites pp 99-135 | Cite as

Evolutionary Aspects of Oribatid Mite Life Histories and Consequences for the Origin of the Astigmata

  • Roy A. Norton


With densities of several hundred thousand individuals per square meter, oribatid mites are often the most diverse and numerically dominant arthropods in organic layers of temperate forest soils, where they feed primarily on decomposing higher plant material and on fungi (Harding and Stuttard 1974, Wallwork 1983, Norton 1985). This chapter represents a first attempt at developing a phylogenetic context for the surprisingly large volume of literature that deals with various aspects of oribatid life histories.


Life History Clutch Size Heat Budget Oribatid Mite Evolutionary Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akimov, I.A. and A. V. Yastrebtsov. 1987. Morphology of certain organ systems of the oribatid mite Nothrus palustris (Oribatei, Nothroidae). In: Soil Fauna and Soil Fertility (B. R. Strigatova ed.). “Nauka”, Moscow. Pp. 534–538.Google Scholar
  2. Alberti, G. 1973. Ernährungsbiologie und Spinnvermögen der Schnabelmilben (Bdellidae, Trombidiformes). Z. Morphol. Tiere 76:285–338.CrossRefGoogle Scholar
  3. Amelsvoort, P. A. M. van and M. B. Usher. 1989. Egg production related to food quality in Folsomia candida (Collembola: Isotomidae): effects on life history strategies. Pedobiologia 33:61–66.Google Scholar
  4. Anderson, J. M. 1975a. Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. J. Anim. Ecol. 44:475–95.CrossRefGoogle Scholar
  5. Anderson, J. M. 1975b. The enigma of soil animal species diversity. In: Proc. Vth Int. Colloq. Soil Zool. (J. Vanek ed.). W. Junk Publ., The Hague. Pp. 51–58.Google Scholar
  6. Anderson, J. M. 1978a. Inter- and intra-habitat relationships between woodland Crypto-stigmata species diversity and the diversity of soil and litter microhabitats. Oecologia 32:341–8.CrossRefGoogle Scholar
  7. Anderson, J. M. 1978b. Competition between two unrelated species of soil Cryptostigmata (Acari) in experimental microcosms. J. Animal Ecol. 47:787–803.CrossRefGoogle Scholar
  8. Aoki, J.-i. 1967. Microhabitats of oribatid mites on a forest floor. Bull. Nat. Sci. Mus. (Tokyo) 10:135–138.Google Scholar
  9. Arlian, L. G. and T. A. Woolley. 1970. Observations on the biology of Liacarus cidarus (Acari: Cryptostigmata, Liacaridae). J. Kans. Entomol. Soc. 43:297–301.Google Scholar
  10. Athias-Binche, F. 1985. Analyse démographique des Uropodides (Arachnides: Anactinotriches) de la hetraie de la Massane, France. Pedobiologia 28:225–253.Google Scholar
  11. Athias-Binche, F. 1987. Signification adaptative des différents types de développements postembryonnaires chez les Gamasides (Acariens, Anactinotriches). Can. J. Zool. 65:1299–1310.CrossRefGoogle Scholar
  12. Athias-Binche, F. 1989. Polymorphismes et hétéromorphies chez les acariens, et la notion de stase selon Grandjean. In: L’Ontogénèse et le Concept de Stase Chez les Arthropodes (H. M. André and J.-C. Lions eds.). Agar Publ., Wavre, Belgium. Pp. 41–57.Google Scholar
  13. Athias-Binche, F. and N. A. Fernandez. 1986. Analyse démographique dune population d’Hydrozetes lemnae Coggi, Acarien Oribate inféodé à la lentille deau Lemna gibba L. en Argentine. 2. Les relations prédateur/proie. Zool. Jahrb. Syst. 113:229–249.Google Scholar
  14. Bäumler, W. 1970. Zur Morphologie, Biologie und Ökologie von Hermannia gibba (C. L. Koch) (Acarina: Oribatei) unter Berücksichtigung einiger Begleitarten. II. Z. angew. Entomol. 66:337–62.Google Scholar
  15. Beck, L. 1969. Zum jahreszeitlichen Massenwechsel zweiger Oribatidenarten (Acari) im neotropischen Überschwemmungswald. Zool. Anz. (Suppl.) 32:535–40.Google Scholar
  16. Beck, L. 1972. Der Einfluss der jahresperiodische Überflutungen auf den Massenwechsel der Bodenarthropoden im zentral-amazonischen Regenwaldgebiet. Pedobiologia 12:133–148.Google Scholar
  17. Beckmann, M. 1988. The development of soil mesofauna in a ruderal ecosystem as influenced by reclamation measures 1. Oribatei (Acari). Pedobiologia 31:391–408.Google Scholar
  18. Behan-Pelletier, V. M. 1988. Redefinition of Zachvatkinibates (Acari: Mycobatidae), with description of a new species and immatures of Z. maritimus Shaldybina 1973. Can. Entomol. 120:797–813.CrossRefGoogle Scholar
  19. Behan-Pelletier, V.M. 1989. Limnozetes (Acari: Oribatida: Limnozetidae) of Northeastern North America. Can. Entomol. 121:453–506.CrossRefGoogle Scholar
  20. Behan-Pelletier, V. M. and S. B. Hill. 1983. Feeding habits of 16 species of Oribatei (Acari) from an acid peat bog, Glenamoy, Ireland. Rev. Écol. Biol. Sol 20:221–268.Google Scholar
  21. Bell, G. 1982. The Masterpiece of Nature. Univ. Calif. Press, Berkeley. Pp. 635.Google Scholar
  22. Bellido, A. 1979. Development postembryonnaire de Carabodes willmanni Bernini 1975 (Acari, Oribatei). Acarologia 20:419–32.Google Scholar
  23. Bellido, A. 1990. Charactéristiques biodémographiques d’un acarien oribate (Carabodes willmanni) des pelouses xérophiles. Can. J. Zool. 68:2221–2229.CrossRefGoogle Scholar
  24. Bernini, F. and R. Nannelli. 1982. Notulae Oribatologicae XXVI. Contribution to the knowledge of the genus Cepheus (Oribatida, Acarida) in Italy. Redia 65:155–188.Google Scholar
  25. Berthet, P. 1964. Field study of the mobility of Oribatei (Acari) using radioactive tagging. J. Anim. Ecol. 33:443–449.CrossRefGoogle Scholar
  26. Bhattacharya, T., V. C. Joyand and S. Joy. 1978. Studies on the effect of temperature on the development of Oppia nodosa Hammer (Acari: Cryptostigmata: Oppiidae). Entomon 3:149–155.Google Scholar
  27. Block, W. 1977. Oxygen consumption of the terrestrial mite Alaskozetes antarcticus (Acari: Cryptostigmata). J. Exp. Biol. 68:69–88.Google Scholar
  28. Block, W. 1980. Survival strategies in polar terrestrial arthropods. Biol. J. Linn. Soc. 14:29–38.CrossRefGoogle Scholar
  29. Block, W. and S. R. Young. 1978. Metabolic adaptations of Antarctic terrestrial micro-arthropods. Comp. Biochem. Physiol. 61 A:363–368.CrossRefGoogle Scholar
  30. Burford, D. A., Jr. 1976. Morphology and life history of Hydrozetes bushnelli n.sp. (Oribatei, Hydrozetidae). Ph.D. dissertation, Univ. Colorado, Boulder, CO. 127 Pp.Google Scholar
  31. Burn, A. J. 1986. Feeding rates of the Cryptostigmatid mite Alaskozetes antarcticus. Br. Antarct. Surv. Bull. 71:11–18.Google Scholar
  32. Cancela da Fonseca, J. P. 1980. Quelques approches analytiques en dynamique des populations édaphiques (Acariens Oribates). Rev. Écol. Biol. Sol 17:445–447.Google Scholar
  33. Cannon, R. J. C. 1987. Effects of low-temperature acclimation on the survival and cold tolerance of an Antarctic mite. J. Insect Physiol. 33:509–521.CrossRefGoogle Scholar
  34. Cannon, R. J. C. and W. Block. 1988. Cold tolerance of microarthropods. Biol. Rev. Camb. Philos. Soc. 63:23–77.CrossRefGoogle Scholar
  35. Cole, L. C. 1954. The population consequences of life history phenomena. Q. Rev. Biol. 29:103–137.PubMedCrossRefGoogle Scholar
  36. Covarrubias, R. 1968. Some observations on Antarctic Oribatei (Acarina). Liochthonius australis sp.n. and two Oppia ssp.n. Acarologia 10:313–356.Google Scholar
  37. Crossley, D. A., Jr. 1977. Oribatid mites and nutrient cycling. In: Biology of Oribatid Mites (D. L. Dindal ed.). SUNY-CESF, Syracuse. Pp. 71–85.Google Scholar
  38. Danks, H. V. 1981. Arctic arthropods. A review of Systematic s and Ecology with Particular Reference to the North American Fauna. Entomol. Soc. Canada, Ottawa. 608 pp.Google Scholar
  39. Dybas, H. S. 1966. Evidence for parthenogenesis in the featherwing beetles, with a taxonomic review of a new genus and eight new species (Coleoptera: Ptiliidae). Fieldiana Zool. 51:11–12.Google Scholar
  40. Fain, A. and A. Herrin. 1978. La prélarve chez les astigmates (Acari). Acarologia 20:566–571.Google Scholar
  41. Fashing, N.J. 1977. The resistant tritonymphal instar and its application in the population dynamics of Naiadacarus arboricolus Fashing, a mite restricted to water-filled treeholes (Acarina: Acaridae). Am. Midi. Nat. 95:337–346.CrossRefGoogle Scholar
  42. Fernandez, N. A. and F. Athias-Binche. 1986. Analyse démographique d’une population d’Hydrozetes lemnae Coggi, Acarien Oribate inféodé à la lentille d’eau Lemna gibba L. en Argentine. 1. Méthodes et techniques, démographie d’H. lemnae comparaisons avec d’autres Oribates. Zool. Jahrb. Abt. Syst. Oekol. Geogr. Tiere 113:213–228.Google Scholar
  43. Fujikawa, T. 1974. Comparison among oribatid faunas from different microhabitats in forest floors. Jap. J. Appl. Entomol. Zool. 9:105–114.Google Scholar
  44. Fujikawa, T. 1987. Biology of Oribatula sakamorii Aoki, a dominant species of the oribatid fauna in nature farming field. In: Soil Fauna and Soil Fertility-Proc. 9th Int. Congr. Soil Zool. (B. R. Strigatova ed.). “Nauka,” Moscow. Pp. 544–552.Google Scholar
  45. Fujikawa, T. 1988. Biology of Tectocepheus velatus (Michael) and T. cuspidentatus Knülle. Acarologia 29:307–315.Google Scholar
  46. Gerson, U., S. Capua and D. Thorens. 1983. Life history and life tables of Rhizoglyphus robini Claparède (Acari: Astigmata: Acaridae). Acarologia 24:439–448.Google Scholar
  47. Gilyarov, M. S. 1982. The ecological role of parthenogenesis. Adv. Mod. Biol. (Moscow) 93:10–22. (In Russian).Google Scholar
  48. Godfray, H. C. J. 1987. The evolution of clutch size in invertebrates. In: Oxford Surveys in Evolutionary Biology, Vol. 4 (P. H. Harvey and L. Partridge eds.). Oxford Univ. Press, NY. Pp. 117–154.Google Scholar
  49. Gould, S.J. and E. S. Vrba. 1982. Exaptation—a missing term in the science of form. Paleobiology 8:4–15.Google Scholar
  50. Gourbière, F., J.-C. Lions and R. Pepin. 1985. Activité et développement d’Adoristes ovatus (C. L. Koch, 1839) (Acarien, Oribate) dans les aiguilles d’Abies alba Mill. Relations avec la décomposition et les microflores fongiques. Rev. Écol. Biol. Sol 22:57–73.Google Scholar
  51. Grandjean, F. 1941. Statistique sexuelle et parthénogenèse chez les Oribates (Acariens). C. R. Seances Acad. Sci. 212:463–467.Google Scholar
  52. Grandjean, F. 1948. Sur les Hydrozetes (Acariens) de l’Europe occidentale. Bull. Mus. nat. Hist. natur. 20:328–335.Google Scholar
  53. Grandjean, F. 1954. Observations sur les Oribates (31e série). Bull. Mus. nat. Hist. natur. 26:582–589.Google Scholar
  54. Grandjean, F. 1956a. Observations sur les Oribates (33e série). Bull. Mus. nat. Hist. natur. 28:111–118.Google Scholar
  55. Grandjean, F. 1956b. Observations sur les Galumnidae (1re série). (Acariens, Oribates). Rev. Fr. Entomol. 23:137–146.Google Scholar
  56. Grandjean, F. 1961. Les Amerobelbidae (Oribates) (1re série). Acarologia 3:303–343.Google Scholar
  57. Grandjean, F. 1962. Prélarves d’Oribates. Acarologia 4:423–439.Google Scholar
  58. Grandjean, F. 1969. Considérations sur le classement des Oribates. Leur division en 6 groupes majeurs. Acarologia 11:127–153.Google Scholar
  59. Grishina, L. G. 1991. Length of the life cycle of oribatid mites (Sarcoptiformes, Oribatei). Sib. Biol. Zh. 3:31–41. (In Russian).Google Scholar
  60. Haarlov, N. 1960. Microarthropods from Danish soils. Ecology, phenology. Oikos (Suppl) 3:1–176.Google Scholar
  61. Haq, M. A. 1978. Breeding biology of oribatid mites. In: Soil Biology and Ecology in India (C. A. Edwards and G. K. Veeresh eds.). Univ. Agric. Sci., Techn. Ser. 22, Bangalore. Pp. 145–151.Google Scholar
  62. Haq, M. A. and C. Adolph. 1981. Spermatophore deposition and transfer in Pelokylla malabarica (Acari: Oribatei). Entomon 6:135–141.Google Scholar
  63. Haq, M. A. and I. D. Konikkara. 1988. Microbial associations in xylophagous oribatids. In: Progress in Acarology, Vol. 1 (G. P. ChannaBassavan and C. A. Viraktamath eds.). Oxford and IBH Publ. Co. Pvt. Ltd., New Delhi. Pp. 469–474.Google Scholar
  64. Haq, M. A., K. Sheela and P. Neena. 1991. Ovoviviparity in oribatid mites. In: Advances in Management and Conservation of Soil Fauna (G. K. Veeresh, D. Rajagopal and C. A. Viraktamath eds.). Oxford and IBH Publ. Co. Pvt. Ltd., New Delhi.Google Scholar
  65. Hammer, M. 1972. Microhabitats of oribatid mites on a Danish woodland floor. Pedobiologia 12:412–423.Google Scholar
  66. Harding, D. J. L. and R. A. Stuttard. 1974. Microarthropods. In: Biology of Plant Litter Decomposition (C. H. Dickinson and G. J. F. Pugh eds.). Academic Press, NY. Pp. 489–532.Google Scholar
  67. Hartenstein, R. 1962. Soil Oribatei. V. Investigations on Platynothrus peltifer (Acarina: Camisiidae). Ann. Entomol. Soc. Am. 55:709–713.Google Scholar
  68. Horn, H. 1978. Optimal tactics of reproduction and life-history. In: Behavioural Ecology: an evolutionary Approach (J. R. Krebs and N. B. Davies eds.). Blackwell Sci. Publ., Boston. Pp. 411–429.Google Scholar
  69. Jacot, A. P. 1933. Aparity among the Oribatidae (Acarina). Can. Entomol. 65:263–64.CrossRefGoogle Scholar
  70. Johnson, K. 1983. The ontogeny and descriptive anatomy of Hydrozetes lemnae (Coggi) (Acari: Oribatei: Hydrozetidae). Thesis, Univ. Kansas, Lawrence, KS. Pp. 57.Google Scholar
  71. Kaneko, N. 1989. Life histories of four oribatid mite species in a mull type soil in a cool temperate forest in Japan. Pedobiologia 33:117–126.Google Scholar
  72. Knülle, W. 1991. Life-cycle strategies in unpredictably varying environments: genetic adaptations in a colonizing mite. In: The Acari: Reproduction, Development and Life-history Strategies (R. Schuster and P. W. Murphy eds.). Chapman and Hall, London. Pp. 51–55.Google Scholar
  73. Krantz, G. W. and E. E. Lindquist. 1979. Evolution of phytophagous mites (Acari). Annu. Rev. Entomol. 24:121–158.CrossRefGoogle Scholar
  74. Krivolutsky, D. A. and A. Ya. Druk. 1986. Fossil oribatid mites. Annu. Rev. Entomol. 31:533–45.CrossRefGoogle Scholar
  75. Lange, A. P. 1960. The prelarva of mites of the order Acariformes and its peculiarities in palaeacarids (Palaeacariformes). Zool. Zh. 39:1819–1834. (In Russian).Google Scholar
  76. Lebrun, P. 1970a. Écologie et biologie de Nothrus palustris (C.L. Koch 1839) 3ème note: Cycle de vie. Acarologia 12:193–207.PubMedGoogle Scholar
  77. Lebrun, P. 1970b. Écologie et biologie de Nothrus palustris (C. L. Koch 1839). (Acarien, Oribate). IV. Survivance-écondité-action d’un prédateur. Acarologia 12:827–848.Google Scholar
  78. Lebrun, P. 1971. Écologie et biocenotique de quelques peuplements d’arthropodes édaph-iques. Inst. R. Sci. Nat. Belg. Mem. 165:1–203.Google Scholar
  79. Lebrun, P. 1977. Comparaison des effets des températures constantes ou variables sur la durée de développement de Damaeus onustus (Acarina: Oribatei). Acarologia 19:136–143.Google Scholar
  80. Lebrun, P. and M. van Ruymbeke. 1971. Intérêt écologique de la relation entre la temperature et la durée de développement des Oribates. Acarologia 13:176–185.Google Scholar
  81. Lebrun, P., G. Van Impe, D. DeSaint Georges-Gridelet, G. Wauthy and H. M. André. 1991. The life strategies of mites. In: The Acari: Reproduction, Development and Life-history Strategies (R. Schuster and P. W. Murphy eds.). Chapman and Hall, London. Pp. 3–22.Google Scholar
  82. Lions, J.-C. 1973. Quelques prélarves nouvelles d’oribates. Acarologia 15:356–370.PubMedGoogle Scholar
  83. Lions, J.-C. 1982. Statistique sexuelle chez deux formes d’oribates proches de Quadroppia quadricarinata (Michael 1885). Acarologia 23:373–389.Google Scholar
  84. Young, S. R. and W. Block. 1980. Some factors affecting metabolic rate in an Antarctic mite. Oikos 34:178–185.CrossRefGoogle Scholar
  85. Luxton, M. 1964. Some aspects of the biology of salt-marsh Acarina. Acarologia (fasc. h.s.) 6:172–182.Google Scholar
  86. Luxton, M. 1967. The zonation of salt marsh Acarina. Pedobiologia 7:55–66.Google Scholar
  87. Luxton, M. 1975. Studies on the oribatid mites of a Danish beech wood soil. II. Biomass, calorimetry, and respirometry. Pedobiologia 15:161–200.Google Scholar
  88. Luxton, M. 1979. Food and energy processing by oribatid mites. Rev. Écol. Biol. Sol 16:103–111.Google Scholar
  89. Luxton, M. 1981a. Studies on the oribatid mites of a Danish beech wood soil. IV. Developmental biology. Pedobiologia 21:312–340.Google Scholar
  90. Luxton, M. 1981b. Studies on the oribatid mites of a Danish beech wood soil. VI. Seasonal population changes. Pedobiologia 21:387–409.Google Scholar
  91. Lynch, M. 1984. Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Q. Rev. Biol. 59:257–290.CrossRefGoogle Scholar
  92. MacArthur, R. H. and E. O. Wilson. 1967. The Theory of Island Biogeography. Princeton Univ. Press, Princeton, NJ. 203 pp.Google Scholar
  93. MacLean, S. F. 1975. Ecological adaptations of tundra invertebrates. In: Physiological Adaptation to the Environment (F. J. Vernberg ed.). Intext Educ. Publ., NY. Pp. 269–300.Google Scholar
  94. Madge, D. S. 1964. The water relations of Belba geniculosa Oudms. and other species of oribatid mites. Acarologia 6:199–223.Google Scholar
  95. Marshall, V. G., R. M. Reeves and R. A. Norton. 1987. Catalogue of the Oribatida (Acari) of continental United States and Canada. Mem. Entomol. Soc. Can. No. 139.Google Scholar
  96. Martin, M. M. 1987. Invertebrate-Microbial Interactions. Ingested Fungal Enzymes in Arthropod Biology. Comstock Publ. Assoc., Ithaca, NY. Pp. 148.Google Scholar
  97. Michael, A. D. 1884 (1883). British Oribatidae, Vol. 1. R. Soc, London. Pp. 1–336, pl. 1–24.Google Scholar
  98. Mitchell, M.J. 1977a. Population dynamics of oribatid mites (Acari, Cryptostigmata) in an aspen woodland soil. Pedobiologia 17:305–319.Google Scholar
  99. Mitchell, M. J. 1977b. Life history strategies of oribatid mites. In: Biology of Oribatid Mites (D. L. Dindal ed.). SUNY-CESF, Syracuse. Pp. 65–69.Google Scholar
  100. Mitchell, M.J. 1979a. Effects of physical parameters and food resources on oribatid mites in forest soils. In: Recent Advances in Acarology, Vol. 1 (J. G. Rodriguez ed.). Academic Press, NY. Pp. 585–592.Google Scholar
  101. Mitchell, M.J. 1979b. Energetics of oribatid mites in an aspen woodland soil. Pedobiologia 17:305–319.Google Scholar
  102. Mitchell, M.J. and D. Parkinson. 1976. Fungal feeding of Oribatid mites (Acari: Cryptostigmata) in an aspen woodland soil. Ecology 57:302–312.CrossRefGoogle Scholar
  103. Muraoka, M. and N. Ishibashi. 1976. Nematode-feeding mites and their feeding behavior. Appl. Entomol. Zool. 11:1–7.Google Scholar
  104. Murphy, P. W. and A. N. Balla. 1973. The bionomics of Humerobates rostrolamellatus Grandjean (Cryptostigmata-Ceratozetidae) on fruit trees. In: Proc. 3rd Int. Congr. Acarol., Prague, 1971. Pp. 97–104.Google Scholar
  105. Nannelli, R. 1975. Osservazioni sulla biologia di Oppia concolor in condizioni sperimentali di allevamento. Redia 56: 111–116.Google Scholar
  106. Newell, I. M. 1945. Hydrozetes Berlese (Acari, Oribatoidea): The occurrence of the genus in North America, and the phenomenon of levitation. Trans. Conn. Acad. Arts Sci. 36:253–68, pls. 1–3.Google Scholar
  107. Norton, R. A. 1980. Observations on phoresy in oribatid mites (Acari: Oribatei). Int. J. Acarol. 6:121–130.CrossRefGoogle Scholar
  108. Norton, R. A. 1983. Redefinition of Mochloribatula (Acari: Mochlozetidae), with new species, recombinations and notes on plant associations. Acarologia 24:449–464.Google Scholar
  109. Norton, R. A. 1984. Monophyletic groups in the Enarthronota (Sarcoptiformes). In: Acarology VI, Vol. 1 (D. A. Griffiths and C. E. Bowman eds.). Ellis Horwood Ltd., Chichester. Pp. 233–240.Google Scholar
  110. Norton, R. A. 1985. Aspects of the biology and systematics of soil arachnids, particularly saprophagous and mycophagous mites. Quaest. Entomol. 21:523–541.Google Scholar
  111. Norton, R. A. and M. C. MacNamara. 1976. The common newt (Notophthalmus viridescens) as a predator of soil mites in New York. J. Ga. Entomol. Soc. 11:89–93.Google Scholar
  112. Norton, R. A. and D. Y. Sillman. 1985. Impact of oily waste application on the mite community of an arable soil. Exp. Appl. Acarol. 1:287–305.CrossRefGoogle Scholar
  113. Norton, R. A., P. M. Bonamo, J. D. Grierson and W. M. Shear. 1988a. Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York State. J. Paleontol. 62:259–269.Google Scholar
  114. Norton, R. A., D. D. Williams, I. D. Hogg and S. C. Palmer. 1988b. Biology of the oribatid mite Mucronothrus nasalis (Acari: Oribatida: Trhypochthoniidae) from a small coldwater springbrook in eastern Canada. Can. J. Zool. 66:622–629.CrossRefGoogle Scholar
  115. Norton, R. A., S. C. Palmer and H-f. Wang. 1988c. Parthenogenesis in Nothridae and related groups. In: Progress in Acarology, Vol. 1 (G. P. ChannaBassavan and C. A. Viraktamath eds.). Oxford and IBH Publ. Co. Pvt. Ltd., New Delhi. Pp. 255–259.Google Scholar
  116. Norton, R. A., W. C. Welbourn and R. D. Cave. 1988d. First records of Erythraeidae parasitic on oribatid mites (Acari, Prostigmata: Acari, Oribatida). Proc. Entomol. Soc. Wash. 90:407–410.Google Scholar
  117. Norton, R. A. and S. C. Palmer. 1991. The distribution, mechanisms and evolutionary significance of parthenogenesis in oribatid mites. In: The Acari: Reproduction, Development and Life-history Strategies (R. Schuster and P. W. Murphy eds.). Chapman and Hall, London. Pp. 107–136.Google Scholar
  118. Norton, R. A. and V. M. Behan-Pelletier. 1991. Calcium carbonate and calcium oxalate as cuticular hardening agents in oribatid mites (Acari: Oribatida). Can. J. Zool. 69:1504–1511.CrossRefGoogle Scholar
  119. Noy-Meir, I. 1973. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst. 4:25–51.CrossRefGoogle Scholar
  120. OConnor, B. M. 1982. Evolutionary ecology of astigmatid mites. Annu. Rev. Entomol. 27:385–409.CrossRefGoogle Scholar
  121. OConnor, B. M. 1984. Phylogenetic relationships among higher taxa in the Acariformes, with particular reference to the Astigmata. In: Acarology VI, Vol. 1 (D. A. Griffiths and C. E. Bowman eds.). Ellis Horwood Ltd., Chichester. Pp. 19–27.Google Scholar
  122. Palmer, S. C. and R. A. Norton. 1990. Further experimental proof of thelytokous parthenogenesis in oribatid mites (Acari: Oribatida: Desmonomata). Exp. Appl. Acarol. 8:149–159.CrossRefGoogle Scholar
  123. Palmer, S. C. and R. A. Norton. 1991. Taxonomic, geographic, and seasonal distribution of thelytokous parthenogenesis in Desmonomata (Acari: Oribatida). Exp. Appl. Acarol. 12:67–81.CrossRefGoogle Scholar
  124. Palmer, S. C. and R. A. Norton. 1992. Genetic diversity in thelytokous oribatid mites (Acari: Acariformes: Desmonomata). Biochem. System. Ecol. 20:219–231.CrossRefGoogle Scholar
  125. Park, O. 1947. Observations on Batrisodes (Coleoptera: Pselaphidae), with particular reference to the American species east of the Rocky Mountains. Bull. Chic. Acad. Sci. 8:45–132, 11 pls.Google Scholar
  126. Parker, S. B. 1982. Synopsis and Classification of Living Organisms, Vol. 2. McGraw-Hill, NY.Google Scholar
  127. Pauly, F. 1956. Zur Biologie einige Belbiden und zur Funktion ihrer Pseudostigmatischen Organe. Zool. Jahrb. Abt. Syst. Oekol. Geogr. Tiere 84:275–328.Google Scholar
  128. Peckham, V. 1967. Studies of the mite Alaskozetes antarcticus (Michael). Antarct. J. U.S. 2:196–197.Google Scholar
  129. Pianka, E. R. 1970. On r- and K-selection. Am. Nat. 104:592–597.CrossRefGoogle Scholar
  130. Purrini, K. 1980. On the incidence and distribution of parasites of soil fauna of mixed coniferous forests, mixed leaf forests, and pure beech forests of lower Saxony, West Germany. In: Soil Biology as Related to Land Use Practices (D. L. Dindal ed.). U.S. Environ. Protection Agency, Washington, DC. Pp. 561–582.Google Scholar
  131. Reddy, A. S., R. Kumar and S. N. Mathur. 1978. Studies on the biology of Galumna flabellifera Hammer, 1958 and its role as fungal spore carrier. In: Soil Biology and Ecology in India. (C. A. Edwards and G. K. Vereesh eds.). Univ. Agri. Sci., Tech. Ser. 22. Hebbal, Bangalore. Pp. 134–143.Google Scholar
  132. Riha, G. 1951. Zur Ökologie der Oribatiden in Kalksteinböden. Zool. Jahrb. Abt. Syst. Oekol. Geogr. Tiere 80:407–450.Google Scholar
  133. Ring, R. A. and D. Tesar. 1981. Adaptations to cold in Canadian arctic insects. Cryobiology 18:199–211.PubMedCrossRefGoogle Scholar
  134. Rockett, C. L. 1980. Nematode predation by oribatid mites (Acari: Oribatida). Int. J. Acarol. 6:219–224.CrossRefGoogle Scholar
  135. Rockett, C. L. and J. P. Woodring. 1966a. Biological investigations on a new Ceratozetes and Pergalumna (Acarina: Cryptostigmata). Acarologia 3:511–520.Google Scholar
  136. Rockett, C. L. and J. P. Woodring. 1966b. Oribatid mites as predators of soil nematodes. Ann. Entomol. Soc. Am. 59:669–671.Google Scholar
  137. Rodriguez, J. G. and Z. A. Stepien. 1973. Biology and population dynamics of Caloglyphus berlesei (Michael) (Acarina: Acaridae) in xenic diet. J. Kans. Entomol. Soc. 46:176–183.Google Scholar
  138. Ryabinin, N. A. and A. N. Pan’kov. 1987. The role of parthenogenesis in the biology of armored mites. Ekologiya 1987:62–64. (In Russian).Google Scholar
  139. Saichuae, P., U. Gerson and Y. Henis. 1972. Observations on feeding and life history of the mite Nothrus biciliatus (Koch). Soil Biol. Biochem. 4:155–164.CrossRefGoogle Scholar
  140. Scharloo, W. 1989. Developmental and physiological aspects of reaction norms. Bioscience 39:465–471.CrossRefGoogle Scholar
  141. Schatz, H. 1983. Über lebensrate von Oromurcia sudetica Willmann (Acari, Oribatei) von einer alpinen Wiese Tirols (Obergurgl, Zentralalpen). Zool. Jahrb. Abt. Syst. Oekol. Geogr. Tiere 110:97–109.Google Scholar
  142. Schatz, H. 1985. The life cycle of an alpine oribatid mite, Oromurcia sudetica Willmann. Acarologia 26:95-100.Google Scholar
  143. Schenker, R. 1984. Spatial and seasonal distribution patterns of oribatid mites (Acari: Oribatei) in a forest soil ecosystem. Pedobiologia 27:133–150.Google Scholar
  144. Schenker, R. 1986. Population dynamics of oribatid mites (Acari: Oribatei) in a forest soil ecosystem. Pedobiologia 29:239–246.Google Scholar
  145. Schmid, R. 1988. Morphologische Anpassungen in einem Räuber-Beute-System: Ameisenkäfer (Scydmaenidae, Staphylinoidea) und gepanzerte Milben (Acari). Zool. Jahrb. Abt. Syst. Oekol. Geogr. Tiere 115:207–228.Google Scholar
  146. Schulte, G. and G. Weigmann. 1977. The evolution of the family Ameronothridae (Acari: Oribatei). II. Ecological aspects. Acarologia 19:167–173.Google Scholar
  147. Schuster, R. 1962. Nachweis eines Paarungszeremoniells bei den Hornmilben (Oribatei). Naturwissenschaften 49:502–503.CrossRefGoogle Scholar
  148. Sengbusch, H. G. 1954. Studies on the life history of three oribatid mites with observations on other species. Ann. Entomol. Soc. Am. 47:646–67.Google Scholar
  149. Seniczak, S. and O. Stefaniak. 1978. The microflora of the alimentary canal of Oppia nitens (Acarina, Oribatei). Pedobiologia 18:110–119.Google Scholar
  150. Shereef, G. M. 1970. Observations on the feeding, reproduction and faeces obtained from oribatids fed on different species of Penicillium and Aspergillus. IV Colloq. Int. Zool. Sol 1970. Dijon, France.Google Scholar
  151. Shereef, G. M. 1972. Observations on oribatid mites in Laboratory cultures. Acarologia 14:281–291.Google Scholar
  152. Sitnikova, L. G. 1960. Prelarvae of oribatid mites. Parazitol. Sb. 19:220–236. (In Russian).Google Scholar
  153. Smrz, J. 1989. Reproductive biology of some soil oribatid and acaridid mites (Acari: Actinedida). In: Regulation of Insect Reproduction IV (M. Tonner, T. Soldán and B. Bennettová eds.). Academia Praha, Prague.Google Scholar
  154. Solhøy, T. 1975. Dynamics of Oribatei populations on Hardangervidda. In: Fennoscandian Tundra Ecosystems. Part 2: Animals and Systems Analysis (F. Wielgolaski ed.). Springer-Verlag, Berlin. Pp. 111–116.CrossRefGoogle Scholar
  155. Southwood, T. R. E. 1978. Ecological Methods, 2nd ed. Chapman and Hall, London. Pp. 524.CrossRefGoogle Scholar
  156. Stamou, G. P. 1987. A phenological model applied to oribatid mites data. Rev. Écol. Biol. Sol 23:453–460.Google Scholar
  157. Stamou, G. P. 1989. Studies on the effect of temperatures on the demographic parameters of Achipteria holomonensis (Acari, Oribatida). Acarologia 30:171–180.Google Scholar
  158. Stamou, G., M. Kattoulas, J. P. Cancela da Fonseca and N. S. Margaris. 1981. Observations on the biology and ecology of Achiptera holomonensis (Acarina, Oribatida). Pedobiologia 23:53–58.Google Scholar
  159. Stamou, G. P. and M. D. Asikidis. 1989. The effect of density on the demographic parameters of two oribatid mites. Rev. Écol. Biol. Sol 26:321–330.Google Scholar
  160. Stamou, G. P. and S. P. Sgardelis. 1989. Seasonal distribution patterns of oribatid mites (Acari, Cryptostigmata) in a forest ecosystem. J. Anim. Ecol. 58:893–904.CrossRefGoogle Scholar
  161. Stearns, S. C. 1976. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51:3–47.PubMedCrossRefGoogle Scholar
  162. Stearns, S. C. 1977. The evolution of life history traits: a critique of the theory and a review of the data. Annu. Rev. Ecol. Syst. 8:145–171.CrossRefGoogle Scholar
  163. Stearns, S. C. 1980. A new view of life-history evolution. Oikos 35:266–281.CrossRefGoogle Scholar
  164. Stearns, S. C. 1989. The evolutionary significance of phenotypic plasticity. Bioscience 39:436–471.CrossRefGoogle Scholar
  165. Stefaniak, O. and S. Seniczak. 1976. The microflora of the alimentary canal of Achipteria coleoptrata (Acarina, Oribatei). Pedobiologia 16:185–194.Google Scholar
  166. Stefaniak, O. and S. Seniczak. 1981. The effect of fungal diet on the development of Oppia nitens (Acari, Oribatei) and on the microflora of its alimentary tract. Pedobiologia 21:202–210.Google Scholar
  167. Sweeney, B. W. 1984. Factors influencing life-history patterns of aquatic insects. In: The Ecology of Aquatic Insects (V. H. Resjh and D. M. Rosenberg eds.). Praeger Publ. Co., NY. Pp. 56–100.Google Scholar
  168. Taberly, G. 1987. Recherches sur la parthénogenèse thélytoque de deux espèces d’Acariens Oribates: Trhypochthonius tectorum (Berlese) et Platynothruspeltifer (Koch). I. Acarologia 28:187–198.Google Scholar
  169. Taberly, G. 1989. L’influence de la température sur la durée des différentes stases immatures des oribates. In: L’Ontogenese et le Concept de Stase Chez les Arthropodes (H. André and J.-C. Lions eds.). Agar Publ., Wavre, Belgium. Pp. 117–122.Google Scholar
  170. Tamm, J. C., H.-W. Mittman and S. Woas. 1984. Zur Landmilbenfauna eines jahresperiodisch trockenfallenden Stauseebodens (Edertalsperre, BRD). Pedobiologia 27:395–404.Google Scholar
  171. Tarras-Wahlberg, N. 1961. The Oribatei of a central Swedish bog and their environment. Oikos (Suppl.) 4:1–56.Google Scholar
  172. Thomas, J. O. M. 1979. An energy budget for a woodland population of oribatid mites. Pedobiologia 19:346–378.Google Scholar
  173. Travé, J. 1963. Écologie et biologie des Oribates (Acariens) saxicoles et arboricoles. Vie Milieu (Suppl.) 14:1–267.Google Scholar
  174. Travé, J. 1968. Sur l’existence d’yeux latéraux depigmentés chez Eobrachychthonius Jacot (Oribate). Acarologia 10:151–158.Google Scholar
  175. Travé, J. 1976. Les prélarves d’Acariens. Mise au point et données récentes. Rev. Écol. Biol. Sol 13:161–171.Google Scholar
  176. Vera, H. and P. Berthet. 1988. Fréquence de mue et taux de survie de deux populations de Platynothrus peltifer (Acari: Oribatidae). Acta Oecol./Oecol. Gener. 9:281–291.Google Scholar
  177. Walker, N. A. 1965 (1964). Euphthiracaroidea of California Sequoia litter: with a Reclassification of the Families and Genera of the World (Acarina: Orib.). Fort Hays Studies-Science Series, No. 3. Hays, Kansas. Pp. 154.Google Scholar
  178. Wallwork, J. A. 1962. Sexual dimorphism in the genus Epilohmannia Berl. 1916. Rev. Zool. Bot. Afr. 65:90–96.Google Scholar
  179. Wallwork, J. A. 1972. Distribution patterns and population dynamics of the microarthropods of a desert soil in southern California. J. Anim. Ecol. 41:291–310.CrossRefGoogle Scholar
  180. Wallwork, J. A. 1979. Energetics of soil mites: the experimental approach. In: Proc. 4th Int. Congr. Acarol. (E. Piffl ed.), Saalfelden, 1974. Akadémiai Kiadó, Budapest.Google Scholar
  181. Wallwork, J. A. 1980. Desert soil microarthropods, an “r” selected system. In: Soil Biology as Related to Land Use Practices (D. L. Dindal ed.). U.S. Environ. Protection Agency, Washington, DC. Pp. 759–769.Google Scholar
  182. Wallwork, J. A. 1983. Oribatids in forest ecosystems. Annu. Rev. Entomol. 28:109–130.CrossRefGoogle Scholar
  183. Wallwork, J. A., B. W. Kamill and W. G. Whitford. 1984. Life styles of desert litter-dwelling microarthropods, a reappraisal based on the reproductive behavior of cryptos-tigmatid mites. S. Afr. J. Sci. 80:163–169.Google Scholar
  184. Wallwork, J. A., M. MacQuitty, S. Silva and W. G. Whitford. 1986. Seasonality of some Chihuahuan Desert soil oribatid mites (Acari: Cryptostigmata). J. Zool. (Lond.) 208:403–416.CrossRefGoogle Scholar
  185. Walter, D. E. and E. K. Ikonen. 1989. Species, guilds, and functional groups: taxonomy and behavior in nematophagous arthropods. J. Nematol. 21:315–327.PubMedGoogle Scholar
  186. Walter, D. E., J. C. Moore and S. J. Loring. 1989. Symphylella sp. (Symphyla: Scolopen-drellidae) predators of arthropods and nematodes in grassland soils. Pedobiologia 33:113–116.Google Scholar
  187. Wanntorp, H-E., D. R. Brooks, T. Nilsson, S. Nylin, F. Ronquist, S. C. Stearns and N. Wedell. 1990. Phylogenetic approaches in ecology. Oikos 57:119–132.CrossRefGoogle Scholar
  188. Webb, N. R. 1989. Observations on the life cycle of Steganacarus magnus (Acari: Cryptostigmata). Pedobiologia 33:293–299.Google Scholar
  189. Weigmann, G. 1975. Labor-und Freilanduntersuchungen zur Generationsdauer von Ori-batiden (Acari:Oribatei). Pedobiologia 15:133–148.Google Scholar
  190. West, C. 1982. Life histories of three species of sub-antarctic oribatid mites. Pedobiologia 23:59–67.Google Scholar
  191. White, M. J. D. 1978. Modes of Speciation. Freeman, San Francisco.Google Scholar
  192. Willmann, C. 1933. Oribatei (Acari) gesammelt von des Deutschen Limnologischen Sunda-Expedition 2. Nachtrag. Arch. Hydrobiol. Suppl. II, Trop. Binnengewässer 3:597–603.Google Scholar
  193. Wolf, M. M. and CL. Rockett. 1984. Habitat changes affecting bacterial composition in the alimentary canal of oribatid mites (Acari: Oribatida). Int. J. Acarol. 10:209–215.CrossRefGoogle Scholar
  194. Woodring, J. P. 1965. The biology of five new species of oribatids from Louisiana. Acarologia 7:564–576.Google Scholar
  195. Woodring, J. P. and E. F. Cook. 1962a. The internal anatomy, reproductive physiology and molting process of Ceratozetes cisalpinus. Ann. Entomol. Soc. Am. 55:164–181.Google Scholar
  196. Woodring, J. P. and E. F. Cook. 1962b. The biology of Ceratozetes cisalpinus Berl., Scheloribates laevigatus Koch, and Oppia neerlandica Oudemans with a description of all stages. Acarologia 4:101–137.Google Scholar
  197. Young, S. R. 1979. Effect of temperature change on the metabolic rate of an Antarctic mite. J. Comp. Physiol. 131:341–346.Google Scholar
  198. Young, S. R. and W. Block. 1980. Some factors affecting metabolic rate in an Antarctic mite. Oikos 34:178–185.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Roy A. Norton

There are no affiliations available

Personalised recommendations