Wave Front Propagation for KPP-Type Equations

  • Mark Freidlin


The following equation was considered in [15]:
$$ \frac{{\partial u\left( {t,x} \right)}}{{\partial t}} = \frac{D}{2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} + f\left( u \right),t > 0,x \in {R^1},u\left( {0,x} \right) = \chi - \left( x \right) = \left\{ {\begin{array}{*{20}{c}} {1,x \leqslant 0} \\ {0,x > 0.} \end{array}} \right. $$
Here D > 0 and f (u) = c(u)u,where the function c(u) is supposed to be Lipschitz continuous, positive for u < 1 and negative for u > 1, and such that c = c(0) = max0≤u≤1 c(u). Let us denote the class of such functions f (u) by F 1.


Convex Hull Markov Process Wave Front Nonlinear Term Wiener Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Barles, L. C. Evans, and P. E. Souganidis, Wave front propagation for reaction-diffusion systems of PDE, Duke Math. J. 62, 835–838 (1990).MathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Carmona, An asymptotic problem for a reaction-diffusion equation with a fast diffusion component, Stochastic and Stoch. Reports 52, 43–80 (1995).MathSciNetzbMATHGoogle Scholar
  3. [3]
    L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana U. Math. J. 38, 141–172 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    M. I. Freidlin, Propagation of concentration waves by a random motion connected with growth, DokL Akad. Nauk SSSR 246, 544–548 (1979).MathSciNetGoogle Scholar
  5. [5]
    M. I. Freidlin, On wave front propagation in periodic media, In Stochastic Analysis and Applications (M. A. Pinsky, ed.), Marcel Decker, New York, pp. 147–166,1984.Google Scholar
  6. [6]
    M. I. Freidlin, Limit theorems for large deviations and reaction-diffusion equations, Ann. Probab. 13, 639–675 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    M. I. Freidlin, Functional Integration and Partial Differential Equations, Princeton U. Press, 1985.zbMATHGoogle Scholar
  8. [8]
    M. I. Freidlin, Coupled reaction-diffusion equations, Ann. Probab. 19(1), 29–57 (1990).MathSciNetCrossRefGoogle Scholar
  9. [9]
    M. I. Freidlin, Semi-linear PDEs and limit theorems for large deviations, pp. 1–107, Lectures in the Summer School in Probability, Saint Flour 1990, Lecture Notes in Mathematics 1527, Springer-Verlag, New York.Google Scholar
  10. [10]
    M. I. Freidlin and T.-Y. Lee, Wave front propagation and large deviations for diffusion-transmutation processes, submitted to Theory Probab. Appl. Google Scholar
  11. [11]
    M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1984.zbMATHCrossRefGoogle Scholar
  12. [12]
    M. I. Freidlin and A. D. Wentzell, Diffusion processes on graph and averaging principle, Ann. Probab. 21, 4, 2215–2245 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    J. Gärtner and M. I. Freidlin, On the propagation of concentration waves in periodic and random media, Dokl. Akad. Nauk SSSR 249, 521–525 (1979).MathSciNetGoogle Scholar
  14. [14]
    T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1976.zbMATHCrossRefGoogle Scholar
  15. [15]
    A. Kolmogorov, I. Petrovskii, and N. Piskunov, Êtude de l’équation de la diffusion avec croissence de la matière at son application a un probleme biologique, Moscow Univ. Bull. Math. 1, 1–24 (1937).Google Scholar
  16. [16]
    S. R. S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable coefficients, Commun. Pure AppL Math. 20(2), 431–455, (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    S. R. S. Varadhan, Large Deviations and Applications, Society for Industrial and Applied Mathematics, Philadelphia, 1984.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Mark Freidlin
    • 1
  1. 1.University of MarylandCollege ParkUSA

Personalised recommendations