Advances in Mucosal Immunology pp 251-255

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 371) | Cite as

Cryptdins: Endogenous Antibiotic Peptides of Small Intestinal Paneth Cells

  • Sylvia S. L. Harwig
  • Patricia B. Eisenhauer
  • Nancy P. Chen
  • Robert I. Lehrer


Despite its nutrient-laden content, only a sparse microbial flora persists within the small intestine’s lumen. How the small intestine controls microbial populations at its critical sites of food absorption and epithelial cell renewal is poorly understood, but multiple factors are likely to contribute. Traditionally, these are believed to include the effects of gastric acidity on organisms that enter it via the oral cavity, the combined mechanical effects of peristalsis and epithelial cell shedding, and possibly the antimicrobial effects of various detergent-like bile salts, fatty acids and lysolipids. A recent report that murine small intestinal Paneth cells contained mRNA encoding a peptide, “cryptdin”,1 that was homologous to the antimicrobial defensins2 found in many mammalian phagocytes, raised the possibility that endogenous antibiotic peptides might also mediate innate small-intestinal resistance to colonization and infection. Because these intestinal defensins had not previously been isolated and tested for antimicrobial activity, we undertook the studies described below.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Ouellette, R. M. Greco, M. James, D. Frederick, J. Naftilan, and J. T. Fallon, J. Cell Biol. 108: 1687 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    R. I. Lehrer, A. K. Lichtenstein, and T. Ganz, Annu. Rev. Immunol. 11: 105 (1993).PubMedCrossRefGoogle Scholar
  3. 3.
    P. B. Eisenhauer, S. S. L. Harwig, and R. I. Lehrer, Infect. Immun. 60: 3556 (1992).PubMedGoogle Scholar
  4. 4.
    R. I. Lehrer, M. Rosenman, S. S. L. Harwig, R. Jackson, and P. B. Eisenhauer, J. Immunol. Meth. 137: 167 (1991).CrossRefGoogle Scholar
  5. 5.
    A. J. Ouellette, D. Pravtcheva, F. H. Ruddle, and M. James, Genomics 5: 233 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    R. S. Sparkes, M. Kronenberg, C. Heinzmann, K. A. Daher, I. Klisak, T. Ganz, and T. Mohandas, Genomics 5: 240 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Liu, E. V. Valore, A. Oren, and T. Ganz, Blood 82: 641 (1992).Google Scholar
  8. 8.
    M. E. Selsted, S. I. Miller, A. H. Henschen, and A. J. Ouellette, J. Cell Biol 118: 929 (1992).Google Scholar
  9. 9.
    P. B. Eisenhauer, S. S. L. Harwig, D. Szklarek, T. Ganz, and R. I. Lehrer, Infect. Immun. 58: 3899 (1990).PubMedGoogle Scholar
  10. 10.
    C. P. Hill, J. Yee, M. E. Selsted, and D. Eisenberg, Science 251: 1481 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    P. B. Eisenhauer and R. I. Lehrer, Infect. Immun. 60: 3446 (1992).PubMedGoogle Scholar
  12. 12.
    T. Tominaga, J. Fukata, Y. Hayashi, Y. Satoh, N. Fuse, H. Segawa, O. Ebisui, Y. Nakai, Y. Osamura, and H. Imura, Endocrinology 130: 1593 (1992).PubMedCrossRefGoogle Scholar
  13. 13.
    E. A. Groisman, E. Chiao, C. J. Lipps, and F. Heffron, Proc. Natl Acad. Sci. USA 86: 7077 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    S. I. Miller, Mol. Microbiol 5: 2073 (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Sylvia S. L. Harwig
    • 1
  • Patricia B. Eisenhauer
    • 1
  • Nancy P. Chen
    • 1
  • Robert I. Lehrer
    • 1
  1. 1.Department of MedicineUCLA-Center for the Health SciencesLos AngelesUSA

Personalised recommendations