Advertisement

Green’s Function Method in the Theory of Strongly Correlated Pseudospin-Electron Systems

  • I. V. Stasyuk
  • A. M. Shvaika

Abstract

An important role of the apex oxygen anharmonic vibrations in the phase transition into superconducting state has been already mentioned.1,2 Within the models describing the coupling of correlated electrons to vibrational degrees of freedom one can consider the model for which the Hubbard Hamiltonian is supplemented with the interaction of electrons with local anharmonic vibrations where the latter are represented by pseudospin variables. The Hamiltonian of the pseudospin-electron model derived in this way has the following form3
$$H = \mathop{\sum }\limits_{i} {{H}_{i}} + \mathop{\sum }\limits_{{ij\sigma }} {{t}_{{ij}}}a_{{i\sigma }}^{\dag }{{a}_{{j\sigma }}},$$
(1)
$${{H}_{i}} = U{{n}_{{i \uparrow }}}{{n}_{{i \downarrow }}} + {{E}_{0}}({{n}_{{i \uparrow }}} + {{n}_{{i \downarrow }}}) + g({{n}_{{i \uparrow }}} + {{n}_{{i \downarrow }}})S_{i}^{z} - \Omega S_{i}^{x} - hS_{i}^{z}.$$
(2)
The similar Hamiltonian was also proposed in Ref. 4 for the description of the propagation of the holes through a lattice of anions with filled shells. The investigations of possible superconducting pair correlations were performed in the framework of model (1) using numerical Monte-Carlo simulations5 and Green’s functions method.6 In previous papers7,8 we considered single-electron spectrum, electron-electron exchange interaction and static dielectric susceptibility of the model (1).

Keywords

Dielectric Susceptibility Tunneling Splitting Anharmonic Vibration Charge Density Fluctuation Generalize Random Phase Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.D. Conradson and I.D. RaistrickScience243:1340(1989).Google Scholar
  2. 2.
    A.R. Bishop, R.L. Martin, K.A. Müller, and Z. TesanoviéZ. Phys. B - Condensed Matter76:17(1989).Google Scholar
  3. 3.
    K.A. Müller, “Phase transitions,” special issue (1988).Google Scholar
  4. 4.
    J.E. Hirsch and S. TangPhys. Rev.B40:2179(1989).Google Scholar
  5. 5.
    M. Frick, W. von der Linden, I. Morgenstern, and H. RaedtZ. Phys. B - Condensed Matter81:327(1990).Google Scholar
  6. 6.
    N.M. Plakida and V.S. UdovenkoMod. Phys. Lett.B6:541(1992).Google Scholar
  7. 7.
    I.V. Stasyuk, A.M. Shvaika, and E. SchachingerPhysicaC213:57(1993);PhysicaB194–196:1965(1994).Google Scholar
  8. 8.
    I.V. Stasyuk and A.M. ShvaikaActa Physica PolonicaA84:293(1993).Google Scholar
  9. 9.
    A. Bussman-Holder, A. Simon, and H. ButtnerPhys. Rev.B39:207(1989).Google Scholar
  10. 10.
    V. Müller, C. Hucho, and D. MaurerFerroelectrics130:45(1992).Google Scholar
  11. 11.
    I.V. Stasyuk and A.M. ShvaikaActa Physica PolonicaA85:363(1994);Preprint Inst. Cond. Matt. Phys. Ukr. Acad. Sci.ICMP-93–12E, Lviv (1993);ibid.ICMP-93–13E, Lviv (1993).Google Scholar
  12. 12.
    P.M. Slobodyan and I.V. StasyukTeor. Mat. Fiz.19:423(1974) in russian.CrossRefGoogle Scholar
  13. 13.
    Yu.A. Izyumov and Yu.N. Scryabin, “Statistical mechanics of magnetically ordered systems,” Consultants’ Bureau, New York (1988).Google Scholar
  14. 14.
    Yu.A. Izyumov and B.M. LetfulovJ. Phys.: Condens. Matter3:5373(1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • I. V. Stasyuk
    • 1
  • A. M. Shvaika
    • 1
  1. 1.Institute for Condensed Matter PhysicsNational Academy of Sciences of UkraineLvivUkraine

Personalised recommendations