Advertisement

Evolution and Persistence Mechanisms of Mouse Hepatitis Virus

  • Wan Chen
  • Ralph S. Baric
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 380)

Abstract

We established and characterized persistently-infected DBT cells with mouse hepatitis virus to study the molecular mechanisms of MHV persistence and evolution in vitro. Following infection, viral mRNA and RF RNA were coordinately reduced by about 70% as compared to acute infection suggesting that the reduction in mRNA synthesis was due to reduced levels of transcriptionally active full length and subgenomic length negativestranded RNAs. Although the rates of mRNA synthesis were also reduced, the relative percent molar ratio of the mRNAs and RF RNAs were similar to those detected during acute infection. In contrast to the finding during BCV persistence, analysis of the MHV leader RNA indicated that the leader RNA and leader/body junction sequences were extremely stable. These data suggested that polymorphism and mutations resulting in intraleader ORFs was not required for MHV persistence. Conversely MHV persistence was significantly associated with a A to G mutation at nt 77 in the 5′ end untranslated region (UTR) of the genomic RNA.

Keywords

Acute Infection Persistent Infection Replicative Form Mouse Hepatitis Virus Infection Time Post 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baybutt HN, Wege H, Meulen VT, etal. J. Gen. Virol. 65:915–924, 1984.PubMedCrossRefGoogle Scholar
  2. 2.
    Hofmann MA, Sethna PB, Brian DA.J. Virol. 64:4108–4114, 1990.Google Scholar
  3. 3.
    Stohlman SA, WeinerLP. ArchVirol. 57:53–61, 1978.Google Scholar
  4. 4.
    Knobler RL, Lampert PW, OldstoneMB. Nature 298:279–280, 1982.PubMedCrossRefGoogle Scholar
  5. 5.
    Perlman S, Jacobsen G, Olson AL,Afifi A. Virology 175:418–426, 1990.PubMedCrossRefGoogle Scholar
  6. 6.
    Fleming JO, Houtman JJ, Baker S,et al. In Laude H and Vautherot JF (eds), Coronaviruses, Plenum Press, New York, 1994, pp327–332.CrossRefGoogle Scholar
  7. 7.
    Holmes KV, Behnke JN. In Meulen VT, Siddell S, Wage H(eds), Biochemistry and Biology of Coronaviruses, 1981, pp287–299.Google Scholar
  8. 8.
    Stohlman SA, Sakaguchi AY, WeinerLP. Virology 98:448–455, 1979.PubMedCrossRefGoogle Scholar
  9. 9.
    Hirano N, Goto N, Makino S,Fujiwara K. In Meulen VT, Siddell S, Wage H (eds), Biochemistry and Biology of Coronaviruses, 1981, pp301–308.Google Scholar
  10. 10.
    Hingley ST, Gombold JL, Lavi E,Weiss SR. Virology 200:1–10, 1994.PubMedCrossRefGoogle Scholar
  11. 11.
    Ahmed R, Stevens JG. In Fields BN, Knipe DM (eds)Virology, Raven, New York, 1990, vol.1. pp241–265.Google Scholar
  12. 12.
    Hoffman MA, Senanayake SD, BrianDA. Proc. Natl. Acad. Sci. USA 90:11733–11737, 1993.CrossRefGoogle Scholar
  13. 13.
    Schaad MC, Stolhman SA, Baric RS,et al. Virology 177:634–645, 1990.PubMedCrossRefGoogle Scholar
  14. 14.
    Fleming JO, Stohlman SA, WeinerLP, et al. Virology 131:296–307, 1983.PubMedCrossRefGoogle Scholar
  15. 15.
    Sawicki SG, Sawicki DL. J. Virol.64:1050–1056, 1990.Google Scholar
  16. 16.
    Makino S, Lai MMC. J. Virol.63:5285–5292, 1989.PubMedGoogle Scholar
  17. Bernard Rosner. In Bernard Rosner(eds), Fundamentals of Biostatistics(3rd Ed.), PWS-KENT Publishing Company, Boston, MA., 1990.Google Scholar
  18. 18.
    Mizzen L. Cheley S, Anderson R,et al. Virology 128:407–417, 1983.PubMedCrossRefGoogle Scholar
  19. 19.
    Stohlman SA, Sakaguchi AY, WeinerLP. Life Sci. 24:1029–1036, 1979.PubMedCrossRefGoogle Scholar
  20. 20.
    Hofmann MA, Chang RY, Ku S, BrianDA. Virology 196:163–171, 1993.PubMedCrossRefGoogle Scholar
  21. 21.
    Liao CL, Lai MMC. J. Virol.68:4727–4737, 1994.PubMedGoogle Scholar
  22. 22.
    Zhang X, Liao CL, Lai MM. J.Virol. 68:4738–4746, 1994.PubMedGoogle Scholar
  23. 23.
    Domingo E, Holland JJ. In Morse SS(eds), The evolutionary Biology of Viruses, Raven Press, New York, 1994,ppl61–184.Google Scholar
  24. 24.
    Scheper GC, Thomas AA, Voorma HO.Biochim. Biophys. Acta. 1089(2):220–226, 1991.PubMedCrossRefGoogle Scholar
  25. 25.
    Elroy SO, Fuerst TR, Moss B.Proc. Natl. Acad. Sci. USA 86:6126–6130, 1989.CrossRefGoogle Scholar
  26. 26.
    Martinez-Salas E, Sáis JC, Domingo E, et al. J. Virol. 67:3748–3755, 1993.PubMedGoogle Scholar
  27. 27.
    Rohll JB, Percy N Barclay WS, etal. J. Virol. 68:4384–4391, 1994.PubMedGoogle Scholar
  28. 28.
    Furuya T, Lai MMC. J. Virol.67:7215–7222, 1993.PubMedGoogle Scholar
  29. 29.
    Fleming JO, et al. J. Virol.58:869–875, 1986.PubMedGoogle Scholar
  30. 30.
    Kyuwa S, et al. Virology65:1789–1795, 1991.Google Scholar
  31. 31.
    Weismiller DG, Sturman LS, holmesKV, et al. J. Virol. 64:3051–3055, 1990.PubMedGoogle Scholar
  32. 32.
    Lucas A, Coulter M, Flintoff W,et al. Virology 88:325–337, 1978.PubMedCrossRefGoogle Scholar
  33. 33.
    Murray RS, Cai GY, Cabirac GF, etal. Virology 188:274–284, 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Wan Chen
    • 1
  • Ralph S. Baric
    • 1
  1. 1.The Department of EpidemiologyThe University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations