Molecular Bases of Tropism in the PUR46 Cluster of Transmissible Gastroenteritis Coronaviruses

  • M. L. Ballesteros
  • C. M. Sánchez
  • J. Martín-Caballero
  • L. Enjuanes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 380)


Transmissible gastroenteritis coronavirus (TGEV) infects both, the enteric and the respiratory tract of swine. S protein, that is recognized by the cellular receptor, has been proposed that plays an essential role in controlling the dominant tropism.The genetic relationship of S gene from different enteric strains and non-enteropathogenic porcine respiratory coronaviruses (PRCVs) was determined. A correlation between tropism and the genetic structure of the S gene was established. PRCVs, derived from enteric isolates have a large deletion at the N-terminus of the S protein. Interestingly, two respiratory isolates, attenuated Purdue type virus (PTV-ATT) and Toyama (TOY56) have a full-length S gene. PTV-ATT has two specific amino acid differences with the S protein of the enteric viruses. One is located around position 219, within the deleted area, suggesting that alterations around this amino acid may result in the loss of enteric tropism.

To study the role of different genes in tropism, a cluster of viruses closely related to PUR46 strain was analyzed. All of them have been originated by accumulating point mutations from a common, virulent isolate which infected the enteric tract. During their evolution these viruses have lost, virulence first, and then, enteric tropism. Sequencing analysis proved that enteric tropism could be lost without changes in ORFs 3a, 3b, 4, 6, and 7, and in 3′-end untranslated regions (3’-UTR). To study the role of the S protein in tropism recombinants were obtained between an enteric and a respiratory virus of this cluster. Analysis of the recombinants supported the hypothesis on the role in tropism of S protein domain around position 219.


Parental Virus Enteric Virus Restrictive Temperature PUR46 Strain PUR46 Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. l.
    Bohl, E. H. Antibody in serum, colostrum, and milk of swine after infection or vaccination with transmissible gastroenteritis virus. Infect. Immun. 1972; 6: 289–301.PubMedGoogle Scholar
  2. 2.
    Britton, P., Page, K. W., Mawditt, K., Pocock, D. H. Sequence comparison of porcine transmissible gastroenteritis virus (TGEV) with porcine respiratory coronavirus. VHIth International Congress of Virology. 1990. IUMS, Berlin, pp. P6–018.Google Scholar
  3. 3.
    Callebaut, P., Correa, I., Pensaert, M., Jiménez, G., Enjuanes, L. Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus. J. Gen. Virol. 1988; 69: 1725–1730.PubMedCrossRefGoogle Scholar
  4. 4.
    Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L. K., Norén, O., Laude, H. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 1992; 357: 417–420.PubMedCrossRefGoogle Scholar
  5. 5.
    Fichot, O., Girard, M. An improved method for sequencing of RNA templates. Nucleic Acids Res. 1990;18:6162.PubMedCrossRefGoogle Scholar
  6. 6.
    Haelterman, E. O., Pensaert, M. B. Pathogenesis of transmissible gastroenteritis of swine. Proc. 18th World Vet. Congress. 1967. Paris. Vol. 2, pp. 569–572.Google Scholar
  7. 7.
    Jiménez, G., Correa, I., Melgosa, M. P., Bullido, M. J., Enjuanes, L. Critical epitopes in transmissible gastroenteritis virus neutralization. J. Virol. 1986; 60: 131–139.PubMedGoogle Scholar
  8. 8.
    Laude, H., Godet, M., Bernard, S., Gelfi, J., Duarte, M., Delmas, B. Functional domains in the spike protein of transmissible gastroenteritis virus. VI International symposium on corona-and related viruses.1994. Québec, Canada.Google Scholar
  9. 9.
    Laude, H., Vanreeth, K., Pensaert, M. Porcine respiratory coronavirus -molecular features and virus host interactions. Vet. Res. 1993; 24: 125–150.PubMedGoogle Scholar
  10. 10.
    Makino, S., Keck, J. G., Stohlman, S. A., Lai, M. M. C. High-frequency RNA recombination of murine coronaviruses. J. Virol. 1986; 57: 729–737.PubMedGoogle Scholar
  11. 11.
    McClurkin, A. W., Norman, J. O. Studies on transmissible gastroenteritis of swine II. Selected charac-teristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Can. J.Comp. Vet. Sci. 1966; 30: 190–198.Google Scholar
  12. 12.
    Pensaert, M., Callebaut, P., Vergote, J. Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet. Q. 1986; 8: 257–260.PubMedCrossRefGoogle Scholar
  13. 13.
    Rasschaert, D., Duarte, M., Laude, H. Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. J. Gen. Virol. 1990; 71: 2599–2607.PubMedCrossRefGoogle Scholar
  14. 14.
    Sánchez, C. M., Gebauer, F., Suñe, C., Méndez, A., Dopazo, J., Enjuanes, L. Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 1992; 190: 92–105.PubMedCrossRefGoogle Scholar
  15. 15.
    Sánchez, C. M., Jiménez, G., Laviada, M. D., Correa, I., Suñé, C., Bullido, M. J., Gebauer, F., Smerdou, C, Callebaut, P., Escribano, J. M., Enjuanes, L. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 1990; 174: 410–417.PubMedCrossRefGoogle Scholar
  16. 16.
    Suñé, C., Jiménez, G., Correa, L, Bullido, M. J., Gebauer, F., Smerdou, C., Enjuanes, L. Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology 1990; 177: 559–569.PubMedCrossRefGoogle Scholar
  17. 17.
    Wesley, R. D., Woods, R. D., Cheung, A. K. Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus. J. Virol. 1991; 65: 3369–3373.PubMedGoogle Scholar
  18. 18.
    Wesley, R. D., Woods, R. D., Hill, H. T., Biwer, J. D. Evidence for a porcine respiratory coronavirus, antigenically similar to transmissible gastroenteritis virus, in the United States. J. Vet. Diagn. Invest. 1990; 2:312–317.PubMedCrossRefGoogle Scholar
  19. 19.
    Yokomori, K., Asanaka, M., Stohlman, S. A., Lai, M. M. C. A spike protein-dependent cellular factor other than the viral receptor is required for mouse hepatitis virus entry. Virology 1993; 196: 45–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. L. Ballesteros
    • 1
  • C. M. Sánchez
    • 1
  • J. Martín-Caballero
    • 1
  • L. Enjuanes
    • 1
  1. 1.Department of Molecular and Cellular Biology, Centro Nacional de BiotecnologíaCSIC Campus Univesidad Autónoma CantoblancoMadridSpain

Personalised recommendations