Advertisement

Characterization of the Leader Papain-Like Protease of MHV-A59

  • P. J. Bonilla
  • J. L. Piñón
  • S. Hughes
  • S. R. Weiss
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 380)

Abstract

Sequence analysis of the mouse hepatitis virus, strain A59 (MHV-A59) genome predicts the presence of two papain-like proteases encoded within the first open reading frame of the replicase gene. The more 5′ of these domains, the leader papain-like protease, is responsible for the cleavage of the amino terminal protein, p28. We have defined the core of this protease to between amino acids 1075 and 1344 from the beginning of ORF la. Deletion analysis coupled with in vitro expression, was used to study p28 cleavage by this leader protease. Expression of a series of deletion mutants showed processing of p28, albeit at lower levels in some of them. Reduced p28 production resulting from a 0.4 kb deletion positioned between p28 and the protease domain suggests an involvement of this region in catalytic processing. Some mutants display cleavage patterns indicative of a second cleavage site. Interestingly, this newly identified cleavage site maps to a position similar to the expected cleavage site of a p65 polypeptide detected in MHV-A59 infected cells. Mutagenesis of the catalytic H1272 residue demonstrates that both cleavages observed are mediated by the leader papain-like protease encoded in ORF 1a.

Keywords

Cleavage Site Deletion Mutant Carboxy Terminus Protease Domain Cleavage Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bonilla, P.J.,Gorbalenya, A.E., and Weiss, S.R. Mouse hepatitis virus strain A59 polymerasegene ORF la: heterogeneity among MHV strains. Virology1994;198:736–740.PubMedCrossRefGoogle Scholar
  2. 2.
    Denison,M.R., Zoltick, P.W., Hughes, S.A., Giangreco, B., Olson, A.L., Perlman, S.,Leibowitz, J.L., and Weiss,S.R. Intracellular processing of the N-terminal ORF la proteins of the coronavirusMHV-A59 requires multiple proteolyticevents. Virology 1992;189:274–284.PubMedCrossRefGoogle Scholar
  3. 3.
    Weiss, S.R.,Hughes, S.A., Bonilla, P.J., Turner, J.D., Leibowitz, J.L., and Denison, M.R.Coronavirus polyprotein processing. Arch.Virol. 1994;9:349–358.Google Scholar
  4. 4.
    Hughes, S.A.,Denison, M.R., Bonilla, P.J., Leibowitz, J.L., Baric, R.S., and Weiss, S.R.Anewly identified MHV-A59ORF la polypeptide p65 is temperaturesensitive in two RNA negative mutants. Adv. Exp. Med. Biol. 1994;342:221–226.CrossRefGoogle Scholar
  5. 5.
    Baker, S.C.,Yokomori, K., Dong, S., Carlisle, R., Gorbalenya, A.E., Koonin, E.V., and Lai,M.M.C. Identification of the catalytic sites of a papain-like cysteineproteinase of murine coronavirus. J. Virol. 1993;67,6056–6063.PubMedGoogle Scholar
  6. 6.
    Baker, S.C.,Shieh, C-K., Soe, L.H., Chang, M-F., Vannier, D.M., and Lai, M.M.C.Identification of a domainrequired for autoproteolytic cleavage of murine coronavirus gene A polyprotein.J. Virol. 1989;63, 3693–3699.PubMedGoogle Scholar
  7. 7.
    Higuchi, R.Recombinant PCR. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J.(eds) PCR protocols: a guide to methods and applications. Academic Press, Inc.,San Diego 1990 pp 177–183.Google Scholar
  8. 8.
    Leibowitz,J.L., Perlman, S., Weinstock, G.,DeVries, J.R, Budzilowicz, C., Weissemann, J.M., and Weiss, S.R. Detection of a murine coronavirus nonstructuralprotein encoded in a downstream open reading frame. Virology 1988;164:156–164.PubMedCrossRefGoogle Scholar
  9. 9.
    Zoltick, P.W,Leibowitz, J.L., DeVries, J.R., Weinstock, G.M., and Weiss, S.R. A general method for the inductionand screening of antisera for cDNA-encoded polypeptides: antibodies specificfor a coronavirus putativepolymerase-encoding gene. Gene 1989;85:413–420.PubMedCrossRefGoogle Scholar
  10. 10.
    Studier,W.F., Rosenberg,A.H., Dunn, J.J., and Dubendorf, J.W. Use of T7 RNA polymerase to direct the expression of cloned genes. Methods in Enzymol.1990;185:60–89.CrossRefGoogle Scholar
  11. 11.
    Denison,M.R., Zoltick, P.W, Leibowitz, J.L., Pachuk, C. J., and Weiss, S.R.Identification of polypeptides encoded in open reading frame lb of the putative polymerase gene of themurine coronavirus mouse hepatitis virusA59. J. Virol. 1991;65:3076–3082.PubMedGoogle Scholar
  12. 12.
    Gorbalenya,A.E., Koonin, E.V., and Lai, M.M.C. Putative papain-related thiol proteases ofpositive-strand RNA viruses. FEBS Letters1991;288:201–205.PubMedCrossRefGoogle Scholar
  13. 13.
    Denison, M.R.and Perlman, S. Translation and processing of mouse hepatitis virus virion RNAin a cell-free system. J. Virol.1986;60:12–18.PubMedGoogle Scholar
  14. 14.
    Zhang, L.,Mohan, P.M., and Padmanabhan, R. Processing and localization of Dengue VirusType 2 polyprotein precursorNS3-NS4A-NS4B-NS5. J. Virol. 1992;66:7549–7554.PubMedGoogle Scholar
  15. Hughes, S.A.,Bonilla, P.J., and Weiss, S.R. Analysis of the MHV-A59 p28 cleavage site.Elsewhere in this volume.Google Scholar
  16. 16.
    Snijder,E.J., Wassenaar, A.L.M., and Spaan, W.J.M. The 5’ end of the equine arteritisvirus replicase gene encodes a papain-likecysteine protease. J. Virol. 1992;66:7040–7048.PubMedGoogle Scholar
  17. 17.
    Shapira, R.and Nuss, D.L. Gene expression by a hypovirulence-associated virus of thechesnut blight fungus involves two papain-like protease activities.J.Biol.Chem. 1991;266:19419–19425.PubMedGoogle Scholar
  18. 18.
    Carrington,J.C. and Herndon,K.L.Characterization of the potyviral HC-Pro autoproteolytic cleavage site. Virology 1992;187:308–315.PubMedCrossRefGoogle Scholar
  19. 19.
    Shirako, Y.and Strauss, J.H. Cleavage between nsPl and nsP2 initiates the processingpathway of Sindbis virus nonstructuralpolyprotein P123. Virology 1990; 177, 54–64.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. J. Bonilla
    • 1
  • J. L. Piñón
    • 1
  • S. Hughes
    • 1
  • S. R. Weiss
    • 1
  1. 1.Department of MicrobiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations