Advertisement

Acetogenesis pp 365-385 | Cite as

Acetogenesis from CO2 in the Human Colonic Ecosystem

  • Meyer J. Wolin
  • Terry L. Miller
Part of the Chapman & Hall Microbiology Series book series (CHMBS)

Abstract

Figure 13.1 shows the general features of the colonic fermentation. The human diet contains high concentrations of plant polysaccharides (cellulose, hemicellulose, pectin, and starch). Except for starch, they are not digested by host enzymes and pass to the colon where they are fermented by the cooperative metabolism of a large number of different bacterial species (Cummings, 1985; Wolin and Miller, 1983). Significant amounts of starch escape host digestion and are fermented in the colon (Stephen et al., 1983; Thornton et al., 1987). The fermentation of plant polysaccharides produces acetate, propionate, and butyrate and the gases H2 and CO2 (Cummings, 1985; McNeil, 1984). CH4 is a major product of the colonie fermentation of some humans (Bond et al., 1971; Levitt, 1980). They harbor large concentrations of methane-forming Archae that use H2 to reduce CO2 to CH4 (Miller and Wolin, 1982; Weaver et al., 1986).

Keywords

Human Feces Carbohydrate Fermentation Fecal Suspension Ecological Potential Acetogenic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, H. A., M. D. Kamen, and B. Haas. 1945. Carbon dioxide utilization in the synthesis of acetic and butyric acids by Butyribacterium rettgeri. Proc. Natl. Acad. Sci. USA. 31:355–360.PubMedCrossRefGoogle Scholar
  2. Bond, J. H., Jr., R. R. Engel, and M. D. Levitt. 1971. Factors influencing pulmonary methane excretion in man. J. Exp. Med. 133:572–578.PubMedCrossRefGoogle Scholar
  3. Breznak, J. A., J. M. Switzer, and H. Seitz. 1988. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.CrossRefGoogle Scholar
  4. Breznak, J. A., and J. S. Blum. 1991. Mixotrophy in the termite gut acetogen, Sporomusa termitida. Arch. Microbiol. 156:105–110.CrossRefGoogle Scholar
  5. Cummings, J. H. 1985. Fermentation in the human large intestine: evidence and implications for health. Lancet 1:1206–1028.Google Scholar
  6. Cummings, J. H., E. W. Pomare, W. J. Branch, C. P. Naylor, and G. T. MacFarlane. 1987. Short chain fatty acids in human large intestine, portal hepatic and venous blood. Gut 28:1221–1227.PubMedCrossRefGoogle Scholar
  7. Finegold, S. M., V. L. Sutter, and G. E. Mathisen. 1983. Normal indigenous intestinal flora. In: Human Intestinal Microflora in Health and Disease. D. J. Hentges, (ed.). p. 3. Academic Press, New York.Google Scholar
  8. Geerligs, G., H. C. Aldrich, W. Harder, and G. Diekert. 1987. Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus. Arch. Microbiol. 48:305–313.CrossRefGoogle Scholar
  9. Genther, B. R. S., C. L. Davis, and M. P. Bryant. 1981. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol-and H2-CO2-utilizing species. Appl. Environ. Microbiol. 42:12–19.Google Scholar
  10. Greening, R. C., and J. A. Z. Leedle. 1989. Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol. 151:399–406.PubMedCrossRefGoogle Scholar
  11. Holdeman, L. V., E. P. Cato, and W. E. C. Moore. 1977. Anaerobic Laboratory Manual. 4th ed. VPI Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, VirginGoogle Scholar
  12. Kruh, J. 1982. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol. Cell. Biochem. 42:65–82.PubMedGoogle Scholar
  13. Krumholz, L. R., and M. P. Bryant. 1986. Syntrophococcus sucromutans sp. nov., uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methano-brevibacter as electron acceptor systems. Arch. Microbiol. 143:313–318.CrossRefGoogle Scholar
  14. Lajoie, S. F., S. Bank, T. L. Miller, and M. J. Wolin. 1988. Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54:2723–2727.PubMedGoogle Scholar
  15. Levitt, M. 1980. Intestinal gas production—recent advances in flatology. N. Eng. J. Med. 302:1474–1475.CrossRefGoogle Scholar
  16. Liu, S., and J. M. Suflita. 1993. H2-CO2-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium. Appl. Environ. Microbiol. 59:1325–1331.PubMedGoogle Scholar
  17. Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 56:415–450.CrossRefGoogle Scholar
  18. Lorowitz, W. H., and M. P. Bryant. 1984. Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47:961–964.PubMedGoogle Scholar
  19. McNeil, N. I. 1984. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39:338–342.PubMedGoogle Scholar
  20. Miller, T. L. and M. J. Wolin. 1982. Enumeration of Methanobrevibacter smithii in human feces. Arch. Microbiol. 131:14–18.PubMedCrossRefGoogle Scholar
  21. Miller, T. L., and M. J. Wolin. 1985. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141:116–122.PubMedCrossRefGoogle Scholar
  22. Miller, T. L., and M. J. Wolin. 1986. Methanogens in human and animal intestinal tracts. System. Appl. Microbiol. 7:223–229.CrossRefGoogle Scholar
  23. Prins, R. A., and A. Lankhorst. 1977. Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol. Lett. 1:255–258.CrossRefGoogle Scholar
  24. Roediger, W. E. W. 1982. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 83:424–429.PubMedGoogle Scholar
  25. Royall, D., T. M. S. Wolever, K. N. Jeejeebhoy. 1990. Clinical significance of colonic fermentation. Am. J. Gastroenterol. 85:1307–1312.PubMedGoogle Scholar
  26. Stephen, A. M., A. C. Haddad, and S. F. Phillips. 1983. Passage of carbohydrate into the colon. Direct measurements in humans. Gastroenterology 85:589–595.PubMedGoogle Scholar
  27. Tanaka, Y., K. Bush, T. Eguchi, N. Ikekawa, T. Takaguchi, Y. Kobayashi, and P. J. Higgins. 1990. Effects of 1,25-dihydroxyvitamin D3 and its analogs on butyrate-induced differentiation of HT-29 human colonie carcinoma cells and on the reversal of the differentiated phenotype. Arch. Biochem. Biophys. 276:415–423.PubMedCrossRefGoogle Scholar
  28. Thornton, J. R., A. Dryden, J. Kelleher, and M. S. Losowsky. 1987. Super-efficient starch absorption. A risk factor for colonie neoplasia. Dig. Dis. Sci. 1987. 32:1088–1091.PubMedCrossRefGoogle Scholar
  29. Weaver, G. A., J. A. Krause, T. L. Miller, and M. J. Wolin. 1986. Incidence of methanogenic bacteria in a sigmoidoscopy population: An association of methanogenic bacteria and diverticulosis. Gut 27:698–704.PubMedCrossRefGoogle Scholar
  30. Weaver, G. A., J. A. Krause, T. L. Miller, and M. J. Wolin. 1989. Constancy of glucose and starch fermentation by two different human faecal microbial communities. Gut 30:19–25.PubMedCrossRefGoogle Scholar
  31. Weaver, G. A., J. A. Krause, T. L. Miller, and M. J. Wolin. 1992. Cornstarch fermentation by the colonie microbial community yields more butyrate than does cabbage fiber fermentation; cornstarch fermentation rates correlate negatively with methanogenesis. Am. J. Clin. Nutr. 55:70–77.PubMedGoogle Scholar
  32. Wolever, T. M. S., P. Spadafora, and H. Eshuis. 1991. Interaction between colonie acetate and propionate in humans. Am. J. Clin. Nutr. 53:681–687.PubMedGoogle Scholar
  33. Wolin, M. J. 1982. Hydrogen transfer in microbial communities. In: Microbial Interactions and Communities. A. T. Bull and J. H. Slater (eds.), pp. 323–356. Academic Press, New York.Google Scholar
  34. Wolin, M. J., and T. L. Miller. 1983. Carbohydrate fermentation. In: Human Intestinal Flora in Health and Disease, D. A. Hentges (ed.). pp. 147–165. Academic Press. New York.Google Scholar
  35. Wolin, M. J. and T. L. Miller. 1993. Bacterial strains from human feces that reduce CO2 to acetic acid. Appl. Environ. Microbiol. 59:3551–3556.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Meyer J. Wolin
  • Terry L. Miller

There are no affiliations available

Personalised recommendations