Advertisement

Acetogenesis pp 331-364 | Cite as

Acetogenesis and the Rumen: Syntrophic Relationships

  • Roderick I. Mackie
  • Marvin P. Bryant
Part of the Chapman & Hall Microbiology Series book series (CHMBS)

Abstract

Acetate can be formed, as a major or minor product, from the fermentation of various organic substrates. It is also formed by a synthesis from CO2 and/or other one-carbon precursors. Acetogenic bacteria can be defined as obligate anaerobes that utilize CO2 as a terminal electron acceptor in energy metabolism, producing acetate and other fatty acids (Fuchs, 1986). This review also describes research concerning proton-reducing acetogens in which protons are used as electron acceptors for the oxidation of certain substrates (alcohols, lactate, lowly substituted monobenzenes, and fatty acids) to acetate with concomitant formation of H2. The synthesis of acetate by these organisms is thermodynamically favorable only when the partial pressure of H2 is very low and is normally achieved in the presence of a hydrogen-utilizing methanogen or sulfate reducer. Evidence exists that Clostridium thermoaceticum may also reduce protons and, hence, produce H2 under certain conditions. Thus proton-reducing acetogens may also utilize the acetyl CoA pathway for CO2 reduction (see Chapter 1).

Keywords

Most Probable Number Rumen Fluid Methanogenic Bacterium Rumen Bacterium Rumen Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amos, D. A., and M. J. Mclnerney. 1989. Poly-β-hydroxyalkanoate in Syntrophomonas wolfei. Arch. Microbiol 152:172–177.CrossRefGoogle Scholar
  2. Annison, E. F., and D. G. Armstrong. 1970. Volatile fatty acid metabolism and energy supply. In: Physiology of Digestion and Metabolism in the Ruminant, A. T. Phillipson (ed.), pp. 422–437. Oriel Press, Newcastle.Google Scholar
  3. Bache, R., and N. Pfennig. 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130:255–261.CrossRefGoogle Scholar
  4. Balch, W. E., and R. S. Wolfe. 1979. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). J. Bacteriol. 137:256–263.PubMedGoogle Scholar
  5. Beaty, P. S., and M. J. Mclnerney. 1987. Growth of Syntrophococcus wolfei in pure culture on crotonate. Arch. Microbiol. 147:389–393.CrossRefGoogle Scholar
  6. Boccazil, P., J. A. Patterson, B. J. Wilsey, and D. M. Schaefer. 1991. Hydrogen threshold values for one methanogenic and four acetogenic isolates from the rumen, p. 37. Abstr. Rumen Function Conf., Chicago, IL. 1991.Google Scholar
  7. Boone, D. R., and M. P. Bryant. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40:626–632.PubMedGoogle Scholar
  8. Bouwer, E. J., and P. L. McCarty. 1983. Effects of 2-bromoethanesulfonic acid and 2-chloroethanesulfonic acid on acetate utilization in a continuous-flow methanogenic fixed-film column. Appl. Environ. Microbiol. 45:1408–1410.PubMedGoogle Scholar
  9. Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak. 1992. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387.PubMedCrossRefGoogle Scholar
  10. Braun, M., S. Schoberth, and G. Gottschalk. 1979. Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats. Arch. Microbiol. 120:201–204.PubMedCrossRefGoogle Scholar
  11. Braun, M., F. Mayer, and G. Gottschalk. 1981. Clostridium aceticum (Weiringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch. Microbiol. 128:288–293.PubMedCrossRefGoogle Scholar
  12. Breznak, J. A. 1994. Acetogenesis from carbon dioxide in termite and other insect gastrointestinal systems. In: Acetogenesis, H. L. Drake (ed.), pp. 303–330. Chapman and Hall, New York (this volume).Google Scholar
  13. Breznak, J. A., and M. D. Kane. 1990. Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Ref. 87:309–314.CrossRefGoogle Scholar
  14. Breznak, J. A., and J. M. Switzer. 1986. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol. 52:623–630.PubMedGoogle Scholar
  15. Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.CrossRefGoogle Scholar
  16. Breznak, J. A., and J. M. Blum. 1991. Mixotrophy in the termite gut acetogen, Sporomusa termitida. Arch. Microbiol. 156:105–110.CrossRefGoogle Scholar
  17. Brune, A., and B. Schink. 1990. Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalyzed by cell extracts of Pelobacter acidigallici. J. Bacteriol. 172:1070–1076.PubMedGoogle Scholar
  18. Bryant, M. P. 1979. Microbial methane production—theoretical aspects. J. Anim. Sci. 48:193–201.Google Scholar
  19. Bryant, M. P., N. Small, C. Bouma, and I. M. Robinson. 1958. Studies on the composition of the ruminai flora and fauna of young calves. J. Dairy Sci. 41:1747–1767.CrossRefGoogle Scholar
  20. Bryant, M. P., E. A. Wolin, M. J. Wolin, and R. S. Wolfe. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol. 59:20–31.Google Scholar
  21. Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33:1162–1169.PubMedGoogle Scholar
  22. Cheng, K. J., G. A. Jones, F. J. Simpson, and M. P. Bryant. 1969. Isolation and identification of rumen bacteria capable of anaerobic rutin degradation. Can. J. Microbiol. 15:1365–1374.PubMedCrossRefGoogle Scholar
  23. Cheng, K. J., H. G. Krishnamurty, G. A. Jones, and F. J. Simpson. 1971. Identification of products produced by the anaerobic degradation of naringin by Butyrivibrio sp. C3. Can. J. Microbiol. 17:129–131.PubMedCrossRefGoogle Scholar
  24. Chesson, A., C. S. Stewart, and R. J. Wallace. 1982. Influence of plant phenolics on growth and cellulolytic activity of rumen bacteria. Appl. Environ. Microbiol. 44:597–603.PubMedGoogle Scholar
  25. Clarke, R. T. J. 1977. Methods for studying gut microbes. In: Microbial Ecology of the Gut, R. T. J. Clarke and T. Bauchop (eds.), pp. 1–33. Academic Press, New York.Google Scholar
  26. Clark, F. M., and L. R. Fina. 1952. The anaerobic decomposition of benzoic acid during methane fermentation. Arch. Biochem. Biophys 36:26–32.PubMedCrossRefGoogle Scholar
  27. Cord-Ruwisch, R., H.-J. Seitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the electron acceptor. Arch. Microbiol. 149:350–357.CrossRefGoogle Scholar
  28. DeGraeve, K. G., J. P. Grivet, M. Durand, P. Beaumatin, D. Demeyer. 1990. NMR study of 13CO2 incorporation into short-chain fatty acids by pig large-intestinal flora. Can. J. Microbiol 36:579–582.CrossRefGoogle Scholar
  29. Doddema, H. J., and G. D. Vogels. 1978. Improved identification of methanogenic bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 36:752–754.PubMedGoogle Scholar
  30. Dolfing, J. 1988. Acetogenesis. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), Chap. 9, pp. 417–468. Wiley, New York.Google Scholar
  31. Doré, J. M. 1989a. A study of the phylogenetics, nutrition and one-carbon metabolism of Syntrophococcus sucromutans, Ph.D. thesis, University of Illinois, Urbana-Champaign.Google Scholar
  32. Doré, J. M., and M. P. Bryant. 1989b. Lipid growth requirement and the influence of lipid supplement on the fatty acid and aldehyde composition of Syntrophococcus sucromutans. Appl. Environ. Microbiol. 55:927–933.PubMedGoogle Scholar
  33. Doré, J. M., and M. P. Bryant. 1990. Metabolism of one-carbon compounds by the ruminai acetogen Syntrophococcus sucromutans. Appl. Environ. Microbiol. 56:984–989.PubMedGoogle Scholar
  34. EPA. 1990. Methane emissions and opportunities for control. United States Environmental Protection Agency Report No. EPA/400/9-90/007.Google Scholar
  35. Fina, L. R., and A. M. Fiskin. 1960. The anaerobic decomposition of benzoic acid during methane fermentation. II. Fate of carbons one and seven. Arch. Biochem. Biophys. 91:163–165.PubMedCrossRefGoogle Scholar
  36. Fontaine, F. E., W. H. Peterson, E. McCoy, M. J. Johnson, and G. J. Ritter. 1942. A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43:701–715.PubMedGoogle Scholar
  37. Frazer, A. C., and L. Y. Young. 1986. Anaerobic C., metabolism of the O-methyl-14C-labelled substituent of vanillate. Appl. Environ. Microbiol. 51:84–87.PubMedGoogle Scholar
  38. Fuchs, G. 1986. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39:181–213.CrossRefGoogle Scholar
  39. Genthner, B. R. S., C. L. Davis, and M. P. Bryant. 1981. Features of rumen and sludge strains of Eubacterium limosum, a methanol and H2-CO2-utilizing species. Appl. Environ. Microbiol. 42:12–19.PubMedGoogle Scholar
  40. Genthner, B. R. S., and M. P. Bryant. 1982. Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl. Environ. Microbiol. 43:70–74.PubMedGoogle Scholar
  41. Genthner, B. R. S., and M. P. Bryant. 1987. Additional characteristics of one-carbon compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl. Environ. Microbiol. 53:471–476.Google Scholar
  42. Greening, R. C., and J. A. Z. Leedle. 1989. Enrichment and isolation of Acetitomaculum ruminis gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol. 151:399–406.PubMedCrossRefGoogle Scholar
  43. Gunsalus, R. P., J. A. Romesser, and R. S. Wolfe. 1978. Preparation of coenzyme M analogs and their activity in the methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Biochemistry 17:2374–2377.PubMedCrossRefGoogle Scholar
  44. Hungate, R. E. 1966. The Rumen and Its Microbes. Academic Press, New York.Google Scholar
  45. Hungate, R. E. 1967. Hydrogen as an intermediate in the rumen fermentation. Arch. Microbiol. 59:158–164.Google Scholar
  46. Hungate, R. E. 1975. The Rumen Microbial Ecosystem. Annu. Rev. Ecol. Syst. 6:39–60.CrossRefGoogle Scholar
  47. Hungate, R. E. 1976. The Rumen Fermentation. In: Microbial Production and Utilization of Gases, H. G. Schlegel, G. Gottschalk, and N. Pfennig (eds.), pp. 119–124. Goltze, Göttingen.Google Scholar
  48. Hungate, R. E. 1985. Anaerobic biotransformations of organic matter. In: Bacteria in Nature, Vol. 1, E. R. Leadbetter and J. S. Poindexter (eds.), pp. 39–95. Plenum, New York.Google Scholar
  49. Hungate, R. E., W. Smith, T. Bauchop, T. Yu, and J. C. Robinowitz. 1970. Formate as an intermediate in the bovine rumen fermentation. J. Bacteriol. 102:389–397.PubMedGoogle Scholar
  50. Kane, M. D., and J. A. Breznak. 1991. Acetonema longum gen. nov. sp. nov., an H2/ CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol. 156:91–98.PubMedCrossRefGoogle Scholar
  51. Kane, M. D., A. Brauman, and J. A. Breznak. 1991. Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch. Microbiol. 156:99–104.CrossRefGoogle Scholar
  52. Koch, M., J. Dolfing, K. Wuhrmann, and A. J. B. Zehnder. 1983. Pathways of propionate degradation by enriched methanogenic cultures. Appl. Environ. Microbiol. 45:1411–1414.PubMedGoogle Scholar
  53. Krishnamurty, H. G., K. J. Cheng, G. A. Jones, F. J. Simpson, and J. E. Watkin. 1970. Identification of products produced by the anaerobic degradation of rutin and related flavenoids by Butyrivibrio sp. C3. Can. J. Microbiol. 16:759–767.PubMedCrossRefGoogle Scholar
  54. Krumholz, L. R., C. W. Forsberg, and D. M. Veira. 1983. Association of methanogenic bacteria with rumen protozoa. Can. J. Microbiol. 29:676–680.PubMedCrossRefGoogle Scholar
  55. Krumholz, L. R., M. P. Bryant. 1985. Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int. J. Syst. Bacteriol. 35:454–456.CrossRefGoogle Scholar
  56. Krumholz, L. R., and M. P. Bryant. 1986a. Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol, and quercetin. Arch. Microbiol. 144:8–14.CrossRefGoogle Scholar
  57. Krumholz, L. R., and M. P. Bryant. 1986b. Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxybenzenoids or Methanobrevibacter as electron acceptor systems. Arch. Microbiol. 143:313–318.CrossRefGoogle Scholar
  58. Krumholz, L. R., R. L. Crawford, M. E. Hemling, and M. P. Bryant. 1987. Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J. Bacteriol. 169:1886–1890.PubMedGoogle Scholar
  59. Krumholz, L. R., and M. P. Bryant. 1988. Characterization of the pyrogallol-phloroglucinol isomerase of Eubacterium oxidoreducens. J. Bacteriol. 170:2472–2479.PubMedGoogle Scholar
  60. Leedle, J. A. Z., and R. C. Greening. 1988. Methanogenic and acidogenic bacteria in the bovine rumen: postprandial changes after feeding high-or low-forage diets once daily. Appl. Environ. Microbiol. 54:502–506.PubMedGoogle Scholar
  61. Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev. Microbiol. 40:415–450.PubMedCrossRefGoogle Scholar
  62. Lorowitz, W. H., and M. P. Bryant. 1984. Peptostreptococcusproducts strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47:961–964.PubMedGoogle Scholar
  63. Lovley, D. R., and M. J. Klug. 1983. Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl Environ. Microbiol. 45:1310–1315.PubMedGoogle Scholar
  64. Lovley, D. R. 1985. Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl. Environ. Microbiol. 49:1530–1531.PubMedGoogle Scholar
  65. Lovley, D.R., R. C. Greening, and J. G. Ferry. 1984. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has high affinity for formate. Appl. Environ. Microbiol. 48:81–87.PubMedGoogle Scholar
  66. Mackie, R. I., and M. P. Bryant. 1981. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60°C. Appl. Environ. Microbiol. 41:1363–1373.PubMedGoogle Scholar
  67. Mackie, R. I., and B. A. White. 1991. Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output. J. Dairy Sci. 73:2971–2995.CrossRefGoogle Scholar
  68. Mackie, R. I., B. A. White, and M. P. Bryant. 1991. Lipid metabolism in anaerobic ecosystems. Crit. Rev. Microbiol. 17:449–479.PubMedCrossRefGoogle Scholar
  69. Martin, A. K. 1982. The origin of urinary aromatic compounds excreted by ruminants. 3. The metabolism of phenolic compounds to simple phenols. Br. J. Nutr. 48:497–507.PubMedCrossRefGoogle Scholar
  70. Mclnerney, M. J., M. P. Bryant, and N. Pfennig. 1979. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol. 122:129–135.CrossRefGoogle Scholar
  71. McInerney, M. J., and M. P. Bryant. 1981. Basic principles of bioconversions in anaerobic digestion and methanogenesis. In: Biomass Conversion Processes for Energy and Fuels, S. S. Sofer, and O. R. Zaborsky (eds.), pp. 277–296. Plenum, New York.Google Scholar
  72. Mclnerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981a. Syntrophomonas wolfei gen. nov., sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41:1029–1039.Google Scholar
  73. Mclnerney, M. J., R. I. Mackie, and M. P. Bryant. 1981b. Syntrophic association of a butyrate-degrading bacterium and Methanosarcina enriched from bovine rumen fluid. Appl. Environ. Microbiol. 41:826–828.Google Scholar
  74. Nottingham, P. M., and R. E. Hungate. 1969. Methanogenic fermentation of benzoate. J. Bacteriol. 98:1170–1172.PubMedGoogle Scholar
  75. Ohwaki, D., and R. E. Hungate. 1977. Hydrogen utilization by clostridia in sewage sludge. Appl. Environ. Microbiol. 33:1270–1274.PubMedGoogle Scholar
  76. Opperman, R. A., W. O. Nelson, and R. E. Brown. 1961. In vitro studies of methanogenesis in the bovine rumen: dissimilation of acetate. J. Gen. Microbiol. 25:103–111.Google Scholar
  77. Orskov, E. R. 1975. Manipulation of rumen fermentation for maximum food utilization. Wld Rev. Nutr. Diet 22:153–182.Google Scholar
  78. Prins, R. A., and A. Lankhorst. 1977. Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol. Lett. 1:255–258.CrossRefGoogle Scholar
  79. Ragsdale, S. W. 1991. Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit. Rev. Biochem. Mol. Biol. 26:261–300.PubMedCrossRefGoogle Scholar
  80. Robinson, J. A., R. F. Strayer, and J. M. Tiedje. 1981. Method for measuring dissolved hydrogen in anaerobic ecosystems: application of the rumen. Appl. Environ. Microbiol. 41:545–548.PubMedGoogle Scholar
  81. Robinson, J. A., and J. M. Tiedje. 1982. Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge and sediment. Appl. Environ. Microbiol. 44:1374–1384.PubMedGoogle Scholar
  82. Rowe, J. B., M. L. Loughman, J. V. Nolan, and R. A. Leng. 1979. Secondary fermentation in the rumen of sheep fed a diet based on molasses. Br. J. Nutr. 41:393–397.PubMedCrossRefGoogle Scholar
  83. Russell, J. B., and H. J. Strobel. 1989. Effect of ionophores on ruminai fermentation. Appl. Environ. Microbiol. 55:1–6.PubMedGoogle Scholar
  84. Scheline, R. R. 1966. Decarboxylation and demethylation of some phenolic benzoic acid derivatives by rat cecal contents. J. Pharmacol. 18:664–669.CrossRefGoogle Scholar
  85. Scheline, R. R. 1978. Mammalian Metabolism of Plant Xenobiotics. Academic Press, London.Google Scholar
  86. Schink, B., and N. Pfennig. 1982. Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133:195–201.CrossRefGoogle Scholar
  87. Simpson, F. J., G. A. Jones, and E. A. Wolin. 1969. Anaerobic degradation of some bioflavonoids by microflora of the rumen. Can. J. Microbiol. 15:972–974.PubMedCrossRefGoogle Scholar
  88. Smith, M. R., and R. A. Mah. 1981. 2-Bromoethanesulfonate: a selective agent for isolating resistant Methanosarcina mutants. Curr. Microbiol. 6:321–326.CrossRefGoogle Scholar
  89. Smolenski, W. J., and J. A. Robinson. 1988. In situ rumen hydrogen concentrations in steers fed eight times daily, measured using a mercury reduction detector. FEMS Microbiol. Ecol. 53:95–100.CrossRefGoogle Scholar
  90. Stevani, J., M. Durand, K. DeGraeve, D. Demeyer, and J. P. Grivet. 1991. Degradative abilities and metabolisms of rumen and hindgut microbial ecosystems. In: Hindgut’ 91, T. Sakata and R. L. Snipes (eds.), pp. 123–135. Senshu University Press, Tokyo.Google Scholar
  91. Stewart, C. S., and M. P. Bryant. 1988. The rumen bacteria. In: The Rumen Microbial Ecosystem, P. N. Hobson (ed.), pp. 21–75. Else vier Applied Science, New York.Google Scholar
  92. Stumm, C. K., H. J. Gijzen, and G. D. Vogels. 1982. Association of methanogenic bacteria with ovine rumen ciliates. Br. J. Nutr. 47:95–99.PubMedCrossRefGoogle Scholar
  93. Tanner, R. S., R. S. Wolfe, and L. G. Ljungdahl. 1978. Tetrahydrofolate enzyme levels in Acetobacterium woodii and their implication in the synthesis of acetate from CO2. J. Bacteriol. 134:668–670.PubMedGoogle Scholar
  94. Tanner, R. S., E. Stackebrandt, G. E. Fox, R. Gupta, L. J. Magrum, and C. R. Woese. 1982. A phylogenetic analysis of anaerobic eubacteria capable of synthesizing acetate from carbon dioxide. Curr. Microbiol. 7:127–132.CrossRefGoogle Scholar
  95. Tarvin, D., and A. M. Buswell. 1934. The methane fermentation of organic acids and carbohydrates. J. Am. Chem. Soc. 56:1751–1755.CrossRefGoogle Scholar
  96. Tsai, C. G., and G. A. Jones. 1975. Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation. Can. J. Microbiol. 21:749–801.CrossRefGoogle Scholar
  97. Tsai, C. G., D. M. Gates, W. M. Ingledew, and G. A. Jones. 1976. Products of anaerobic phloroglucinol degradation by Coprococcus sp. Pe15. Can. J. Microbiol. 22:159–164.PubMedCrossRefGoogle Scholar
  98. Van Nevel, C. J., and D. I. Demeyer. 1988. Manipulation of rumen fermentation. In: The Rumen Microbiol Ecosystem, P. N. Hobson (ed.), pp. 387–443. Elsevier Applied Science, New York.Google Scholar
  99. Varel, V. H., M. P. Bryant, L. V. Holdeman, and W. E. C. Moore. 1974. Isolation of ureolytic Peptostreptococcus productus from feces using defined medium: failure of common urease tests. Appl. Microbiol. 28:594–599.PubMedGoogle Scholar
  100. Vogels, G. D., W. F. Hoppe, and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40:608–612.PubMedGoogle Scholar
  101. Vogels, G. D., J. T. Keltjens, and C. Van der Drift. 1988. Biochemistry of methane production. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 707–770. Wiley, New YoGoogle Scholar
  102. Widdell, F. 1988. Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 469–585. Wiley, New York.Google Scholar
  103. Wilfond, T. L., D. M. Schaefer. 1990. Validation of methods for the enrichment and isolation of H2-utilizing, CO2-reducing rumen acetogenic bacteria. Abstr. Annu. Meet. Am. Soc. Microbiol., p. 201.Google Scholar
  104. Wilfond, T. L., J. Ralph, and D. M. Schaefer. 1991. Autotrophic acetogenesis by Acetitomaculum ruminis 190A4 reduced methane production during in vitro incubation of rumen contents. Abstr. Annu. Meet. Am. Soc. Microbiol., p. 211.Google Scholar
  105. Wilfond, T. L., J. Ralph, and D. M. Schaefer. 1994. Determination of H2/CO2 utilizing acetogenic activity in ruminai contents using 13C-isotope ratio mass spectrometry and NMR. (in preparation).Google Scholar
  106. Wofford, N. Q., P. S. Beaty, and M. J. Mclnerney. 1986. Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J. Bacteriol. 167:179–185.PubMedGoogle Scholar
  107. Wolin, M. J., and T. L. Miller. 1988. Microbe-microbe interactions. In: The Rumen Microbial Ecosystem, P. N. Hobson (ed.), pp. 343–359. Elsevier Applied Science, New York.Google Scholar
  108. Wolin, M. J., and T. L. Miller. 1994. Acetogenesis from carbon dioxide in human gastrointestinal systems. In: Acetogenesis, H. L. Drake (ed.) pp. 365–385, Chapman and Hall, New York (this volume).Google Scholar
  109. Wood, H. G., S. W. Ragsdale, and E. Pezacka. 1986. The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol. Rev. 39:345–362.CrossRefGoogle Scholar
  110. Wood, H. G., and L. G. Ljungdahl. 1991. Autotrophic character of the acetogenic bacteria. In: Variations in Autotrophic Life, Barton, L. L. and J. Shively (eds.), pp. 201–250. Academic Press, San Diego.Google Scholar
  111. Yamamoto, I., T. Saiki, S. M. Liu and L. G. Ljungdahl. 1983. Purification and properties of NADP-dependent formate hydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J. Bacteriol. 258:1826–1832.Google Scholar
  112. Young, L. Y., and A. C. Frazer. 1987. The fate of lignin and lignin-derived compounds in anaerobic environments. Geomicrobiol J. 5:261–293.CrossRefGoogle Scholar
  113. Zehnder, A. J. B., B. A. Huser, T. D. Brock, and K. Wuhrmann. 1980. Characterization of an acetate-decarboxylating non-hydrogen oxidizing methane bacterium. Arch. Microbiol. 124:1–11.PubMedCrossRefGoogle Scholar
  114. Zhao, H., D. Yang, C. R. Woese, and M. P. Bryant. 1993. Assignment of fatty acid-β-oxidizing syntrophic bacteria to Syntyrophomonadeceae fam. nov. on the basis of 16S rRNA sequence analysis. Int. J. Syst. Bacteriol. 43:278–286.PubMedCrossRefGoogle Scholar
  115. Zinder, S. H., T. Anguish, and S. C. Cardell. 1984. Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor. Appl. Environ. Microbiol. 47:1343–1345.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Roderick I. Mackie
  • Marvin P. Bryant

There are no affiliations available

Personalised recommendations