Gene Therapeutic Approaches for β-Cell Replacement

  • Alberto Hayek
  • Gillian M. Beattie
  • Fred Levine
Part of the Endocrine Updates book series (ENDO, volume 11)


In this chapter, special emphasis is placed on human cells as potential cell-based insulin delivery systems in type 1 diabetes. At this time, the only viable alternative for cell therapy in diabetes is the use of isolated human islets, either fresh or cryopreserved, as is utilized in clinical transplantation protocols. A recent review of islet transplantation for patients with type 1 diabetes concluded that although there are some important reasons for optimism, the treatment remains experimental (1) and the current outcome of the procedure is quite negative. Of a total of 305 patients receiving islet transplants between 1974 and 1996, only 10% of recipients were insulin-free at one year and of those, only one patient remained insulin-independent for more than five years. Of the many obstacles to successful islet transplantation, two remain of paramount importance: islet destruction by immune processes (either allo-or autoimmune), and the shortage of tissue for islet isolation. As more islet transplantation centers are being developed, the scarcity of tissue will become more acute, and the need for innovative methods to increase existing cell supplies will become more relevant. Thus, in this chapter we will focus on efforts to develop cell-based strategies to obtain physiologic insulin replacement.


Islet Cell Human Islet Islet Transplantation Insulin Gene Transporter Associate With Antigen Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hering B, Ricordi C. Islet transplantation for patient with type 1 diabetes. Graft 1999;2:12–27.Google Scholar
  2. 2.
    Tyden G, Reinholt FP, Sundkvist G, Bolinder J. Recurrence of autoimmune diabetes mellitus in recipients of cadaveric pancreatic grafts. New Engl J Med 1996;335(12):860–864.PubMedGoogle Scholar
  3. 3.
    Otsu 1, Dunleavy K, Mullon CJP, Solomon BA, Monaco AP. Treatment of diabetes by xenogeneic islets without immunosuppression: use of vascularized bioartificial pancreas. Diabetes 1996;45:342–347.Google Scholar
  4. 4.
    Sun Y, Ma X, Zhou D, Vacek I, Sun AM. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 1996;98(6):1417–1422.PubMedGoogle Scholar
  5. 5.
    Groth CG, Korsgren O, Tibell A, et al. Transplantation of porcine foetal pancreas to diabetic patients. Lancet 1994;344:1402–1404.PubMedGoogle Scholar
  6. 6.
    Xenotransplantation and xenogeneic infections. N Engl J Med 1999;333:1498–1501.Google Scholar
  7. 7.
    Patience C, Takeuchi Y, and Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nature Med 1997;3:282–286.PubMedGoogle Scholar
  8. 8.
    Steinhuber S, Brack M, Hurasmann G, Schwelberger H, Dierich MP, Vogetseder W. Distribution of human endogenous retrovirus HERV-K genomes in humans and different primates. Hum Genet 1995;96:188–192.PubMedGoogle Scholar
  9. 9.
    Kazazian HHJ, Scott AF. “Copy and paste” transposable elements in the human genome. J Clin Invest 1993;91:1859–1860.PubMedGoogle Scholar
  10. 10.
    Larsen JL, Stratta RI. Pancreas transplantation: a treatment option for insulin-dependent diabetes mellitus. Diabetes/Metab 1997;Rev 13(4):209–246.Google Scholar
  11. 11.
    Lacy PE, Hegre OD, Gerasimidi-Vazeou A, Genitle FT, Dionne KE. Maintenance of normoglycaemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 1991;254:1782–1784.PubMedGoogle Scholar
  12. 12.
    Lim F, Sun AM. Microencapsulated islets a bioartificial endocrine pancreas. Science 1980;210:908–910.PubMedGoogle Scholar
  13. 13.
    Sullivan IS, Maki T, Borland KM, et al. Biohybrid artificial pancreas: long-term implantation studies in diabetic, pancreatectomized dogs. Science 1991;252:718–721.PubMedGoogle Scholar
  14. 14.
    Zhou D, Sun YL, Vacek I, Ma P, Sun AM. Normalization of diabetes in cynomologus monkeys by xenotransplantation of microencapsulated porcine islets. Transplant Proc 1994;26:1091–1994.PubMedGoogle Scholar
  15. 15.
    Scharp DW, Swanson CJ, Olack BJ, et al. Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type Il diabetes and in nondiabetic control subjects. Diabetes 1994;43:1167–1170.PubMedGoogle Scholar
  16. 16.
    Tziampazis E, Sambanis A. Tissue engineering of a bioartificial pancreas: modeling the cell environment and device function. Biotechnol Prog 1995;11:115–126.PubMedGoogle Scholar
  17. 17.
    Lanza RP, Sullivan SJ, Chick WL. Islet transplantation with immunoisolation. Diabetes 1992;41:1503–1510.PubMedGoogle Scholar
  18. 18.
    Gu D, Sarvetnik N. Epithelial cell proliferation and islet neogenesis in IFN-y transgenic mice. Development 1993;118:33–46.PubMedGoogle Scholar
  19. 19.
    Vinik A, Pittenger G, Rafaeloff R, Rosenberg L. Factors controlling pancreatic islet neogenesis. Tumour Biol 1993;14:184–200.PubMedGoogle Scholar
  20. 20.
    Otonkoski T, Beattie GM, Lopez AD, Hayek A. Use of hepatocyte growth factor/scatter to increase transplantable human foetal islet cell mass. Transplantation Proceedings 1994;26:3334.PubMedGoogle Scholar
  21. 21.
    Miettinen PJ, Otonkoski T, Voutilainen R. Insulin-like growth factor-II and transforming growth factor-a in the developing human foetal pancreatic islets. J Endocr 1993;138:127–136.PubMedGoogle Scholar
  22. 22.
    Oberg C, Waltenberger J, Claesson-Welsh L, Welsh M. Expression of protein tyrosine kinases in islet cells: possible role of the Flk-1 receptor for beta-cell maturation from duct cells. Growth Factors 1994;10:115–126.PubMedGoogle Scholar
  23. 23.
    Brelje TC, Parsons JA, Sorenson RL. Regulation of islet beta-cell proliferation by prolactin in rat islet. Diabetes 1994;43:263–273.PubMedGoogle Scholar
  24. 24.
    Neilsen JH, Billestrup N, Moldrup A, et al. Growth of the endocrine pancreas: the role of somatolactogenic hormones and receptors. Biochem Soc Trans 1993;21:146–149.Google Scholar
  25. 25.
    Watanabe T, Yonemura Y, Yonekura H, et al. Pancreatic beta-cell replication and amelioration of surgical diabetes by reg protein. Proc Natl Acad Sci USA 1994;91:3589–3592.PubMedGoogle Scholar
  26. 26.
    Rafaeloff R, Pittenger GL, Barlow SW, et al. Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters. J Clin Invest 1997;99(9):2100–2109.PubMedGoogle Scholar
  27. 27.
    Baeza N, Moriscot C, Figarella C, Guy-Crotte O, Vialettes B. Reg protein: a potential beta-cell specific growth factor? Diabetes/Metab 1996;22:229–234.Google Scholar
  28. 28.
    Shing Y, Christofori G, Hanahan D, et al. Betacellulin: a mitogen from pancreatic ß cell tumors. Science 1993;259:1604–1608.PubMedGoogle Scholar
  29. 29.
    Mashima H, Ohnisi H, Wakabayashi K, et al. Betacellulin and Activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin secreting cells. J Clin Invest 1996;97:16471654.Google Scholar
  30. 30.
    Otonkoski T, Cirulli V, Beattie GM, et al. A role for hepatocyte growth factor/scatter factor in foetal mesenchyme-induced pancreatic fl-cell growth. Endocrinology 1996;137(7):3131–3139.PubMedGoogle Scholar
  31. 31.
    Michael J.Shamblott, Joyce Axelman, Shunping Wang, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Nail Acad Sci USA 1998;95:13726–13731.Google Scholar
  32. 32.
    James A.Thompson, Joseph Itskovitz-Eldor, Sander S. Shapiro, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;6:1145–1147.Google Scholar
  33. 33.
    Gospodarowicz D. Preparation of extracellular matrices produced by cultured bovine corneal endothelial cells and PF-HR-9 endodermal cells: their use in cell culture. In: Barnes DW, Sirbasku DA, Sato GH, eds. Cell Culture methods for molecular and cell biology. 256th ed. New York, NY: Alan R Liss Inc, 1984:275–295.Google Scholar
  34. 34.
    Adamson ED. The effect of collagen on cell division, cellular differentiation and embryonic development. Collagen in Health and Disease 1982;218–243.Google Scholar
  35. 35.
    Bissell MJ, Barcellos-Hoff H. The influence of extracellular matrix on gene expression: is structure the message? J Cell Science Suppl 1987;8:327–343.Google Scholar
  36. 36.
    Beattie GM, Lappi DA, Baird A, Hayek A. Functional impact of attachment and purification in the short term culture of human pancreatic islets. J Clin Endocr Metab 1991;73:93–98.PubMedGoogle Scholar
  37. 37.
    Beattie GM, Rubin JS, Many MI, Otonkoski T, Hayek A. Regulation of proliferation and differentiation of human foetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor and cell-cell contact. Diabetes 1996;45:1223–1228.PubMedGoogle Scholar
  38. 38.
    Beattie GM, Levine F, Mally M, et al. Acid ß-Galactosidase: A developmentally regulated marker of endocrine cell precursors in the human foetal pancreas. J Clin Endocrinol Metab 1994;78:12321240.Google Scholar
  39. 39.
    Langhofer M, Hopkinson SB, Jones JCR. The matrix secreted by 804G cells contains lamininrelated components that participate in hemidesmosome assembly in vitro. J Cell Sci 1993;105:753764.Google Scholar
  40. 40.
    Matsuit C, Wang CK, Nelson CF, Bauer EA, Hoeffer WK. The Assembly of Laminin-5 Subunits*Google Scholar
  41. 41.
    Ryle C, Breitkreutz D, Stark H, et al. Density-dependent modulation of synthesis of keratin 1 + 10 in the human keratinocyte line HaCat and in ras-transfected tumorigenic clones. Differentiation 1989;40:42–54.PubMedGoogle Scholar
  42. 42.
    Akaogi K, Okabe Y, Funahashi K, et al. Cell adhesion activity of a 30-kDa major secreted protein from human bladder carcinoma cells. Biochem Biophys Res Comm 1994;198(3):1046–1053.PubMedGoogle Scholar
  43. 43.
    Bourdrel L, Lin CH, Lauren SL, et al. Recombinant human transforming growth factor-beta 1: expression by Chinese hamster ovary cells, isolation, and characterization. Prot Expr & Pur 1993;4(2):130–140.Google Scholar
  44. 44.
    Bellusci S, Moens G, Thiery JP, Jouanneau J. A scatter factor-like factor is produced by a metastatic variant of a rat bladder carcinoma cell line. J Cell Sci 1994;107:1277–1287.PubMedGoogle Scholar
  45. 45.
    Hayek A, Beattie GM, Cirulli V, Lopez AD, Ricordi C, Rubin JS. Growth factor/matrix-induced proliferation of human adult 13-cells. Diabetes 1995;44:1458–1460.PubMedGoogle Scholar
  46. 46.
    Eriksson PS, Perfilieve E, Bjork-Ericksson T, et al. Neurogenesis in the adult hippocampus. Nat Med 1998;4:1313–1317.PubMedGoogle Scholar
  47. 47.
    Beattie GM, Cirulli V, Lopez AD, Hayek A. Ex vivo expansion of human pancreatic endocrine cells. J Clin Endocrinol Metab 1997;82:1852–1856.PubMedGoogle Scholar
  48. 48.
    Newgard CB. Engineering and gene therapy strategies for insulin replacement in diabetes. Diabetes 1994;43:341–350.PubMedGoogle Scholar
  49. 49.
    Poitout V, Olsen LK, Robertson RP. Insulin-secreting cell lines: classification, characteristics and potential applications. Diabetes Metab 1996;22:72–14.Google Scholar
  50. 50.
    Efrat S. Genetic engineering of beta-cells for cell therapy of diabetes: cell growth function, and immunogenicity. Diabetes 1996; Rev 4: 224–234.Google Scholar
  51. 51.
    Tiedge M, Lenzen S. Gene Therapy of diabetes mellitus: aims, methods and future prospects. Exp Clin Endocrinol Diabetes 1995;103:46–55.PubMedGoogle Scholar
  52. 52.
    Zhang Y, Warren-Perry M, Sakura H, et al. No evidence for mutations in a putative beta-cell ATP-sensitive K+ channel subunit in. Diabetes/Metab 1997;Rev 13(4): 209–246.Google Scholar
  53. 53.
    Knaack D, Fiore DM, Surana M, et al. Clonal insulinoma cell line that stably maintains correct glucose responsiveness. Diabetes 1994; 43:1413–1417.PubMedGoogle Scholar
  54. 54.
    Levine F. Gene therapy for diabetes: strategies for p-cell modification and replacement. Diabetes 1997;13(4):209–246.Google Scholar
  55. 55.
    Rae PA, Yip CC, Schimmer BP. Isolation of cloned Syrian hamster insulinoma cell lines with limited capacity for insulin production. J Physiol Phatmacol 1979;57:819–824.Google Scholar
  56. 56.
    Chick WL, Warren S, Chute RN, Like AA, Lauris V, Kitchen KC. A transplantable insulinoma in the rat. Proc Natl Acad Sci USA 1977;74:628–632.PubMedGoogle Scholar
  57. 57.
    Santerre RF, Cook RA, Crisel RMD, et al. Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic ß cells. Proc Natl Acad Sci USA 1981;78(7): 32768–4343.Google Scholar
  58. 58.
    Hanahan D. Heritable formation of pancreatic 13-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 1985;315:115–122.PubMedGoogle Scholar
  59. 59.
    Radvanyl F, Christgau S, Baekkeskov S, Jolicoeur C, Hanahan D. Pancreatic ß cells cultured from individual preneoplastic foci in a multistage tumorigenesis pathway: a potentially general technique for isolating physiologically representative cell lines. Mol Cell Biol 1993;13(7):4223–4232.Google Scholar
  60. 60.
    Drucker DJ. Molecular pathophysiology of glucagon-SV40 T antigen transgenic mice. Am J Physiol 1994; 267:E629–E635.PubMedGoogle Scholar
  61. 61.
    Christofori G, Naik P, Hanahan D. A Second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 1994; 369:414–418.PubMedGoogle Scholar
  62. 62.
    Yamaguchi N, Yamamura Y, Kunihiko K, Ohtsuji E, Imanish J, Ashihara T. Characterization of new human pancreatic cancer cell lines which propagate in a protein-free chemically defined medium. Cancer Res 1990;50:7008–7014.PubMedGoogle Scholar
  63. 63.
    Morgan RT, Woods LK, Moore GE, Quinn LA, McGavran L, Gordon SG. Human cell line(COLO 357) of metastatic pancreatic adenocarcinoma. Intl J Cancer 1980;25:591–598.Google Scholar
  64. 64.
    Vila MR, Lloreta J, Schussler MH, Berrozpe G, Welt S, Real FX. New pancreas cancer cell lines that represent distinct stages of ductal differentiation. Lab Invest 1995;72:395–404.PubMedGoogle Scholar
  65. 65.
    Lundqvist M, Oberg K. In vitro culture of neuroendocrine tumors of the pancreas and gut. Acta Oncol 1989;28:335–339.PubMedGoogle Scholar
  66. 66.
    Gueli N, Toto A, Palmieri G, Carmenini G, Delpino A, Ferrini U. In vitro growth of a cell line originated from a human insulinoma. JECCR 1987;6:281–285.Google Scholar
  67. 67.
    Pour PM, Permert J, Mogaki M, Fujii H, Kazakoff K. Endocrine aspects of exocrine cancer of the pancreas. Am J Clin Path 1993;100:223–230.PubMedGoogle Scholar
  68. 68.
    Permert J, Mogaki M, Andren-Sanberg A, Kazakoff K, Pour PM. Pancreatic mixed ductal-islet tumors. Intl J Pancreatol 1992;11:23–29.Google Scholar
  69. 69.
    Slack JMW. Developmental biology of the pancreas. Development 1995;121:1569–1580.PubMedGoogle Scholar
  70. 70.
    Murray MR, Bradley CR. Two islet cell adenomas of the human pancreases cultivated in vitro. Am J Cancer 1935;25:98.Google Scholar
  71. 71.
    Soldevila G, Buscema M, Marini V, et al. Transfection with SV40 gene of human pancreatic endocrine cells. J Autoimmun 1991;4:381–396.PubMedGoogle Scholar
  72. 72.
    Wang S, Beattie GM, Mally MI, et al. Isolation and characterization of a cell line from the epithelial cells of the human foetal pancreas. Cell Transplantation 1997;6(1):59–67.PubMedGoogle Scholar
  73. 73.
    Wang S, Beattie GM, Hayek A, Levine F. Development of a VSV-G protein pseudotyped retroviral vector system expressing dominant oncogenes from a lacO-modified inducible LTR promoter. Gene 1996;182:145–150.PubMedGoogle Scholar
  74. 74.
    Chou JY. Differentiated mammalian cell lines immortalized by temperature-sensitive tumor viruses. Mol Endocrinol 1989; 3:1511–1514.PubMedGoogle Scholar
  75. 75.
    Chang SE. In vitro transformation of human cells. Biochem Biophys Acta 1986;823:161–194.PubMedGoogle Scholar
  76. 76.
    Bradbury JM, Sykes H, Edwards PAW. Induction of mouse mammary tumours in a transplantation system by sequential introduction of the myc and ras oncogenes. Intl J Cancer 1995;48:908–915.Google Scholar
  77. 77.
    Ragozzino MM, Kuo A, DeGreori J, Kohl N, Ruley HE. Mechanism of oncogene cooperation: activation and inactivation of a growth antagonist. Environ Health Perspect 1991;93:97–103.PubMedGoogle Scholar
  78. 78.
    Oft M, Peli J, Rudaz C, Schwarz H, Geug H, Reichmann E. TGF-beta and Ha-Ras collaborate in modulating the phenotype plasticity and invasiveness of epithelial tumor cells. Genes Dev 1996;10:2462–2477.PubMedGoogle Scholar
  79. 79.
    van Leeuwen F, Nusse R. Oncogene activation and oncogene cooperation in MMTV induced mouse mammary cancer. Sem Cancer Biol 1995;6:127–133.Google Scholar
  80. 80.
    Adams JM, Cory S. Transgenic models of tumor development. Science 1991;254:1161–1167.PubMedGoogle Scholar
  81. 81.
    Lind K, Blume N, Michelsen BK, Bucchini D, Madsen OD. Differential expression of non allelic insulin genes in rodent islet tumour cells. J Mol Endocrinol 1993;11:305–318.Google Scholar
  82. 82.
    Sanvito F, Herrera P-L, Huarte J, et al. TGF-131 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 1994;120:3451–3462.PubMedGoogle Scholar
  83. 83.
    Wang S, Beattie GM, Mally MI, Lopez AD, Hayek A. Analysis of a human foetal pancreatic islet cell line. Transplantation Proceedings 1997;29:2219.Google Scholar
  84. 84.
    Levine F, Wang S, Beattie GM, et al. Development of a cell line from the human foetal pancreas. Transplantation Proceedings 1995;27(6 PT 3):3410.PubMedGoogle Scholar
  85. 85.
    Alema S, Tato F. Oncogenes and muscle differentiation: multiple mechanisms of interference. Semi Cancer 1994;5:147–156.Google Scholar
  86. 86.
    Kong Y, Johnson SE, Taparowsky EJ, and Koniezny SF. Ras p21val inhibits myogenesis with out altering the DNA binding or transcriptional activities of myogenic basic helix-loop-helix factors. Mol Cell Biol 1995;15:5202–5213.Google Scholar
  87. 87.
    Jehn B, Costello E, Marti A, Keon N, Deane R. Over-expression of myc, ras, src, and fos inhibits mouse mammary epithelial cell differentiation. Mol Cell Biol 1992;12:3890–3902.PubMedGoogle Scholar
  88. 88.
    Efrat S, Fleischer N, Hanahan D. Diabetes induced in male transgenic mice by expression of human H-ras oncoprotein in pancreatic beta cell. Mol Cell Biol 1990;10:1779–1783.PubMedGoogle Scholar
  89. 89.
    Efrat S. Sexual dimorphism of pancreatic beta cell degeneration in transgenic mice expressing an insulin-ras hybrid gene. Endocrinology 1991;128:897–901.PubMedGoogle Scholar
  90. 90.
    Robinson GLWG, Henderson E, Massari ME, Murre C, Stein R. c-Jun inhibits insulin control element-mediated transcription by affecting the transactivation potential of the E2A gene products. Mol Cell Biol 1995;15:1398–1404.PubMedGoogle Scholar
  91. 91.
    Tal M, Wu Y-J, Leiser M, et al. [Va112IHRAS downregulates GLUT2 in beta cells of transgenic mice without affecting glucose homeostasis. Proc Nati Acad Sci USA 1992;89:5744–5748.Google Scholar
  92. 92.
    Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartweig EA, Cepko CL. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 1992;68:33–51.PubMedGoogle Scholar
  93. 93.
    Hue E, Kin JB, Sarraf P, Spiegelman BM. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 1996;274:2100–2103.Google Scholar
  94. 94.
    Reichmann E. Oncogenes and epithelial cell transformation. Sim Cancer Biol 1994;5:157–165.Google Scholar
  95. 95.
    Sandgren EP, Quaife CJ, Paulovich AG, Palmiter RD, Brinster RL. Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc Natl Acad Sci USA 1991;88:93–97.PubMedGoogle Scholar
  96. 96.
    Welsh M, Andersson A. Transplantation of transfected pancreatic islets: stimulation of beta cell DNA synthesis by the src oncogene. Transplantation 1994;57:297–299.PubMedGoogle Scholar
  97. 97.
    Welsh M, Welsh N, Nilsson T, et al. Stimulation of pancreatic islet beta-cell replication by oncogenes. Proc Nati Acad Sci USA 1988;85:116–120.Google Scholar
  98. 98.
    Berggren P-O, Hallberg A, Welsh N, Arkhanunar P, Nilsson T, Welsh M. Transfection of insulin-producing cells with a transforming c-HA-ras oncogene stimulates phospholipase C activity. Biochem J 1989;259:701–707.PubMedGoogle Scholar
  99. 99.
    Welsh M, Mares J, Oberg C, Karlsson T. Genetic factors of importance for beta-cell proliferation. Diabetes/Metab 1993;Rev 9:25–36.Google Scholar
  100. 100.
    Seino Y, Yamamoto T, Inoue K, et al. Abnormal facilitative glucose transporter gene expression in human islet cell tumors. J Clin Endocrinol Metab 1993;76:75–78.PubMedGoogle Scholar
  101. 101.
    Vozzi C, Ullrich S, Charollais A, Philippe J, Orci L, Meda P. Adequate connexin-mediated coupling is required for proper insulin production. J Cell Biol 1995;131(6:1):1561–1572.PubMedGoogle Scholar
  102. 102.
    Stein RW, Corrigan M, Yaciuk P, Whelan J, Moran E. Analysis of E1A-mediated growth regulation functions: binding of the 300-Kilodalton cellular product correlates with EIA enhancer repression function and DNA synthesis-inducing activity. J Virol 1990;64:4421–4427.PubMedGoogle Scholar
  103. 103.
    Stein RW, Whelan J. Insulin gene enhancer activity is inhabited by adenovirus 5 Ela gene products. Mol Cell Biol 1989;9:4531–4534.PubMedGoogle Scholar
  104. 104.
    Clark SA, Burnham BL, Chick WL. Modulation of glucose-induced insulin secretion from a rat clonal beta-cell line. Endocrinology 1990;127:2779–2788.PubMedGoogle Scholar
  105. 105.
    Ferber S, Beltrandel Rio H, Johnson JH, et al. Glut-2 gene transfer into insulinoma cells confers both low and high affinity glucose-stimulated insulin release. J Biol Chem 1994;269(15):11523–11529.Google Scholar
  106. 106.
    Noda M, Komatsu M, Sharp GWG. The BHC-9 B-cell lines preserves the characteristics of progenitor mouse islets. Diabetes 1996; 45:1766–1773.PubMedGoogle Scholar
  107. 107.
    Pictet RL, Rutter WJ. The molecular basis of the mescenchymal-epithelial interactions in pancreatic development in Cell Interactions in Differentiation, Karkinen-Jaaskelainen M, Saxen L, and Weiss L, Eds. Academic Press, London 1977;339–350.Google Scholar
  108. 108.
    Adams JC, Watt FM. Regulation of development and differentiation by the extracellular matrix. Development 1993;117:1183–1198.PubMedGoogle Scholar
  109. 109.
    Madsen OD, Andersen LC, Michelsen B, et al. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo. Proc Natl Acad Sci USA 1988;85:6652–6656.PubMedGoogle Scholar
  110. 110.
    Lengauern C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancer. Nature 1999;386:623–627.Google Scholar
  111. 111.
    Lengauer C, Kinzler KW, Vogelstein B. DNA methylation and genetic instability in colorectal cancer cells. Proc Natl Acad Sci USA 1997;94:2445–2550.Google Scholar
  112. 112.
    Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF. Abnormal centrosome amplification in the absence of p53. Science 1996;271:1744–1747.PubMedGoogle Scholar
  113. 113.
    Gartner H-V, Seidl C, Luckenbach C, et al. Genetic analysis of a sarcoma accidentally transplanted from a patient to a surgeon. N Engl J Med 1996;335:1494–1496.PubMedGoogle Scholar
  114. 114.
    Naji A. Induction of tolerance by intrathymic inoculation of alloantigen. Current Opinion in Immunology 1996;8:704–709.PubMedGoogle Scholar
  115. 115.
    Levey MM, Ketchum RI, Park DH, et al. Engraftment and function of intrathymic pancreatic islet autografts in dogs. Tranplant Proc 1995;27:607–608.Google Scholar
  116. 116.
    Ricordi C, Murase N, Rastellini C, Behboo R, Demetris AJ, Starzl TE. Indefinite survival of rat islet allografts following infusion of donor bone marrow without cytoablation. Cell Trans 1996;5:53–55.Google Scholar
  117. 117.
    Gill RG, Coulombe M, Lafferty KJ. Pancreatic islet allograft immunity and tolerance: the two-signal hypothesis revisited. Immunol Rev 1996;149:75–96.PubMedGoogle Scholar
  118. 118.
    Parish NM, Hutchings PR, O’Reilly L, et al. Tolerance induction as a therapeutic strategy for the control of autoimmune endocrine disease in mouse models. Immunol Rev 1995;144:269–300.PubMedGoogle Scholar
  119. 119.
    Efrat S, Fejer G, Brownlee M, Horwitz MS. Prolonged survival of pancreatic islet allografts mediated by adenovirus immunoregulatory transgenes. Proc Natl Acad Sci USA 1995;92:69476951.Google Scholar
  120. 120.
    Osorio RW, Ascher NL, Melzer JS, Stock PG. Beta-2 microgolobulin gene disruption prolongs murine islet allograft survival in NOD mice. Transplant Proc 1994;26:752.PubMedGoogle Scholar
  121. 121.
    Markmann JF, Desai NM, Bassin H, Kim JI, Baker CF. Prolonged survival of class I deficient mouse islet allograft but not xenografts. Transplant Proc 1994;26:748.PubMedGoogle Scholar
  122. 122.
    Faustman D. Strategies for circumventing transplant rejection: modification of cells tissues and organs. Trends Biotechnol 1995;13:100–105.PubMedGoogle Scholar
  123. 123.
    Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role for CD95 ligand in preventing graft rejection. Nature 1995;377:630–632.PubMedGoogle Scholar
  124. 124.
    Qin L, Chavin KD, Ding Y, et al. Retrovirus-mediated transfer of viral IL-10 gene prolongs murine cardiac allograft survival. J Immunol 1996;156:2316–2323.PubMedGoogle Scholar
  125. 125.
    Efrat S, Fusco-DeMane D, Lemberg H, Emran OA, Wang X. Conditional transformation of a pancreatic n-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc Natl Acad Sci USA 1995;92:3576–3580.PubMedGoogle Scholar
  126. 126.
    Wang S, Beanie G, Hayek A, Levine F. Transformation of human primary fibroblasts by pseudotype retroviral vectors expressing multiple dominant oncogenes from an inducible promoter. Gene 1996;182:145–150.PubMedGoogle Scholar
  127. 127.
    Zou Y-R, Muller W, Gu H, Rajewsky K. Cre-loxP-mediated gene replacement: a mouse strain producing humanizes antibodies. Current Biol 1994;4:1099–1103.Google Scholar
  128. 128.
    Metzger D, Clifford J, Chiba H, Chambon P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci USA 1995;92:6991–6995.PubMedGoogle Scholar
  129. 129.
    Westerman KA, Leboulch. Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc Natl Acad Sci USA 1996;93:8971–8976.PubMedGoogle Scholar
  130. 130.
    Connors TA. The choice of prodrugs for Gene direct enzyme prodrug therapy of cancer. Gene Ther 1995;2:702–709.PubMedGoogle Scholar
  131. 131.
    Moolten FL. Drug sensitivity (“suicide”) gene for selective cancer chemotherapy. Cancer Gene Ther 1994;1:279–287.PubMedGoogle Scholar
  132. 132.
    Rosengard AM, Cary NR, Langford GA, Tucker AW, Wallwork J, White DJ. Tissue expression of human complement inhibitor, decay-accelerating factor, in transgenic pigs: a potential approach for preventing xenograft rejection. Transplantation 1995;59:1325–1333.PubMedGoogle Scholar
  133. 133.
    Elshami AA, Saavedra A, Zhang H, et al. Gap junction play a role in the “bystander effect” of the herpes simplex virus thymidine kinase/ganciclovir system in vitro. Gene Ther 1996;3:85–92.PubMedGoogle Scholar
  134. 134.
    Misnil M, Piccoli C, Tirabt G, Willecke K, Yamasaki H. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA 1996;93:1831–1835.Google Scholar
  135. 135.
    Berggren PO, Hallberg A, Welsh N, Arkahammar P, Nilsson T, and Welsh M. Transfection of insulin-producing cells with a transforming c-Ha-ras oncogene stimulates phospholipase C activity. Biochem J 1989;259:701–707.PubMedGoogle Scholar
  136. 136.
    German MS, Moss LG, Rutter WJ. Regulation of insulin gene expression by glucose and calcium in transfected primary islet cultures. J Biol Chem 1990;265(36):22063–22066.PubMedGoogle Scholar
  137. 137.
    Basudev F, Jones PM, Howell SL. Protein phosphorylation in the regulation of insulin secretion: the use of site-directed inhibitory peptides in electrically permeabilised islet of Langerhans. Acta Diabetol 1995;32:32–37.PubMedGoogle Scholar
  138. 138.
    Mucke S, Polack A, Pawlita M, et al. Suitability of Epstein-Barr virus-based episomal vectors for expression of cytokine genes in human lymphoma cells. Gene Ther 1997;4:82–92.PubMedGoogle Scholar
  139. 139.
    Wang F, Li X, Annis B, Faustman DL. Tap-1 and Tap-2 gene therapy selectively restores conformationally dependent FILA Class I expression in type I diabetes cells. Hum Gene Ther 1995;6:1005–1017.PubMedGoogle Scholar
  140. 140.
    Sun TQ, Livanos E, Vos JM. Engineering a mini-herpes virus as a general strategy to transduce up to 180 Kb of functional self-replicating human mini-chromosomes. Gene Ther 1996;3:1081–1088.PubMedGoogle Scholar
  141. 141.
    Mungal SA, Steinberg BM, Taichman LB. Replication of plasmid-derived human papillomavirus type II DNA in cultured keratinocytes. J Virol 1992;66:3220–3224.PubMedGoogle Scholar
  142. 142.
    Welsh N, Hallberg A, Sandler S, Hellerstrom C. Use of liposomes to introduce substance into pancreatic islet cells. Diabetes 1988;37:1123–1128.PubMedGoogle Scholar
  143. 143.
    Oberg C, Welsh N. Nonspecific delivery of substances into pancreatic islet cells by Ph sensitive liposomes in vitro. Diabetes Metab 1990;16:48–54.Google Scholar
  144. 144.
    Welsh N, Oberg C, Hellerstom C, Welsh M. Liposome mediated transfection of pancreatic islet cells. Biomed Biochem Acta 1990;49:1157–1164.Google Scholar
  145. 145.
    Saldeen J, Curiel DT, Eizirik DL, et al. Efficient gene transfer to dispersed human pancreatic islet cells in vitro using adenovirus-polylsine/DNA complexes or polycationic liposomes. Diabetes 1996;45:1197–1203.PubMedGoogle Scholar
  146. 146.
    Gainer AL, Korbutt GS, Rajotte RV, Warnock GL, Elliott JF. Successful biolistic transformation of mouse pancreatic islets while preserving cellular function. Transplantation 1996; 61(11):1567–1571.Google Scholar
  147. 147.
    Guo Z, Chong ASF, Jandeska S, et al. Gene gun-mediated gene transfer and expression in rats islet. Transplant Proc 1997;29:2209–2210.PubMedGoogle Scholar
  148. 148.
    Bartlett RJ, Secore SJ, Bottino R, Fernandez L, Inverardi L, Ricordi C. Use of biolistic particle accelerator to induce genes into isolated islets of Langerhans. Transplant Proc 1997;29:22012202.Google Scholar
  149. 149.
    Jindal RM, Sidner RA, Bocham MR. et al. Adeno-associated virus vectors: potential for gene therapy. Graft 1998;1:147–153.Google Scholar
  150. 150.
    Ponnazhagan S, Mukherjee P, Yonder MC. Adeno-associated virus 2-mediated gene transfer in vivo: organ-tropism and expression of transduced sequences in mice. Gene 1997;190:203–210.PubMedGoogle Scholar
  151. 151.
    Mirenda V, Charreau B, Sigalla J, et al. Xenoreactivity on the pig islet to human combination: feasibility of adenovirus-mediated gene transfer in to pig islet. Transplant Proc 1996;28:808–810.PubMedGoogle Scholar
  152. 152.
    Becker TC, BeltrandelRio H, Noel RJ, Johnson JH, Newgard CB. Overexpression of hexokinase I in isolated islets of Langerhans via recombinant adenovirus: enhancement of glucose metabolism and insulin secretion at basal but not stimulatory glucose levels. J Biol Chem 1994;269:2123421238.Google Scholar
  153. 153.
    Csete ME, Benhamou PY, Drazan KE, et al. Efficient gene transfer to pancreatic islet mediated by adenoviral vectors. Transplantation 1995;59:263–268.PubMedGoogle Scholar
  154. 154.
    Smith TAG, Mehaffey MG, Kayda DB, et al. Adenovirus mediated expression of therapeutic plasma levels of human factors IX in mice. Nature Genet 1993;5:397–402.PubMedGoogle Scholar
  155. 155.
    Yang Y, Su Q, Wilson JM. Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs. J Virol 1996;70:7209–7212.PubMedGoogle Scholar
  156. 156.
    Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrin alphaVbeta3 and alphaVbeta5 promote adenovirus internalization but not virus attachment. Cell 1993;73:309–319.PubMedGoogle Scholar
  157. 157.
    Brunicardi FC, Stagner J, Bonner-Weir S, et al. Microcirculation of the islets of Langerhans. Diabetes 1996;45:385–392.PubMedGoogle Scholar
  158. 158.
    Curiel DT, Agarwal S, Wagnerm E, Cotten M. Adenovirus enhancement of transferrinpolylysine-mediated gene delivery. Proc Natl Acad Sci USA 1991;88:8850–8854.PubMedGoogle Scholar
  159. 159.
    Michael SI, Curiel DT. Strategies to achieve targeted gene delivery via the receptor-mediated endocytosis pathway. Gene Ther 1994;1:223–232.PubMedGoogle Scholar
  160. 160.
    McLachlin JR, Cometta K, Eglitis MA, Anderson WF. Retroviral-mediated gene transfer. Prog in Nuc Acid Res and Mol Biol 1990;38:91–135.Google Scholar
  161. 161.
    Roe TY, Reynold TC, Yu G, Brown PO. Integration of murine leukemia virus DNA depends on mitosis. EMBO J 1993;12:2099–2108.PubMedGoogle Scholar
  162. 162.
    Yoshida T, Hanahan D. Murine pancreatic ductal adenocarcinoma produced by in vitro transduction of polyoma middle T oncogene into the islets of Langerhans. Am J Pathol 1994;145:671–684.PubMedGoogle Scholar
  163. 163.
    Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996;272:263–267.PubMedGoogle Scholar
  164. 164.
    Akkina RK, Walton RM, Chen ML, Li Q-X, Planelles V, Chen ISY. High-efficiency gene transfer in to CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein. J Virol 1996;70:2581–2585.PubMedGoogle Scholar
  165. 165.
    Luigi Naldini, Ulrike Blomer, Philippe Gallay, et al. In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector. Science 1996;272:263–267.PubMedGoogle Scholar
  166. 166.
    Romain Zufferey, Dea Nagy, Ron J. Mandel, Luigi Naldini, Didier Trono. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nature Biotechnology 1997;15:871–826.PubMedGoogle Scholar
  167. 167.
    Sigalla J, David A, Anegon I, et al. Adenovirus-mediated gene transfer into isolated mouse adult pancreatic islet: normal beta-cell function despite induction of an antiadenovirus immune response. Human Gene Therapy 1997;8:1625–1634.PubMedGoogle Scholar
  168. 168.
    Bosch A, McCray PB, Chang SM, et al. Proliferation induced by keratinocyte growth factor enhances in vivo retroviral-mediated gene transfer to mouse hepatocytes. J Clin Invest 1996;98:2683–2687.PubMedGoogle Scholar
  169. 169.
    Ott M, Stockert RJ, Ma Q, Gagandeep S, Gupta S. Simultaneous upregulation of viral receptor expression and DNA synthesis is required for increasing efficiency of retroviral hepatic gene. J Biol Chem 1998;273:11954–11961.PubMedGoogle Scholar
  170. 170.
    Titia de Lange, Ronald A.DePinho. Unlimited Mileage from Telomerase. Science 1999;283:947–949.PubMedGoogle Scholar
  171. 171.
    Tohru Kiyono, Scott A, Foster, et al. Both Rb/p16 INK4 inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998;396:84–88.PubMedGoogle Scholar
  172. 172.
    Tanya L.Halvorsen, Gil Liebowitz, Fred Levine. Telomerase activity is sufficient to allow transformed cells to escape from crisis. Mol Cell Biol 1999;19 No.3:1864–1870.Google Scholar
  173. 173.
    Newgard CB, McGarry JD. Metabolic coupling factors in pancreatic ß-cell signal transduction. Annu Rev Biochem 1995;64:689–719.PubMedGoogle Scholar
  174. 174.
    Hutton JC. Insulin secretory granule biogenesis and the proinsulin-processing endopeptidase. Diabetologia 1994;37 (Suppl 2):S48–S56.PubMedGoogle Scholar
  175. 175.
    Steiner DF, Rouille Y, Gong Q, Martin S, Caroll R, Chan SJ. The role of prohormone convertase in insulin biosynthesis: evidence for inherited defects in their action in man and experimental animals. Diabetes Metab 1996;22:94–104.PubMedGoogle Scholar
  176. 176.
    MacDonald MJ. Elusive proximal signals of beta-cells for insulin secretion. Diabetes 1990;39:1461–1466.PubMedGoogle Scholar
  177. 177.
    Dunne MJ, Harding EA, Jaggar JH, Squires PE. Ion channels and the molecular control of insulin secretion. Biochem Soc Trans 1994;22:6–12.PubMedGoogle Scholar
  178. 178.
    Prenki M. New insights into pancreatic beta-cell metabolic signaling in insulin secretion. Eur J Endocrinol 1996;134:272–286.Google Scholar
  179. 179.
    Laub O, Rall L, Bell GI, Rutter WJ. Expression of the human insulin gene in an alternate mammalian cell and in cell extracts. J Biol Chem 1983;258:6037–6042.PubMedGoogle Scholar
  180. 180.
    Laub O, and Rutter WJ. Expression of the Human insulin gene and cDNA in a heterologous mammalian system. J Biol Chem 1983;258:6043–6050.PubMedGoogle Scholar
  181. 181.
    Smith DM, Bloom SR. Paracine/autocrine control of the islet and the amylin family. Biochem Soc Trans 1995;23:336–340.PubMedGoogle Scholar
  182. 182.
    Lipes MA, Cooper EM, Skelly R, et al. Insulin-secreting non islet cells are resistant to autoimmune destruction. Proc Natl Acad Sci USA 1996;93:8595–8600.PubMedGoogle Scholar
  183. 183.
    St. Louis D, Verma I. An alternative approach to somatic cell gene therapy. Proc Natl Acad Sci USA 1988; 85:3150–3154.Google Scholar
  184. 184.
    Palmer TD, Rosman GJ, Osborne WRA, Miller DA. Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc Natl Acad Sci USA 1991; 88:1330–1334.PubMedGoogle Scholar
  185. 185.
    Hsueh JL. Clinical protocol of human gene transfer for hemophilia B original covering memo. Hum Gene Ther 1992;3:543–552.PubMedGoogle Scholar
  186. 186.
    Liu Hong-W , Ofosu FA, Chang PL. Expression of human factor IX by microencapsulated recombinant fibroblast.Hum Gene Ther 1993;4:292–301.Google Scholar
  187. 187.
    Osborne WRA, and Miller AD. Design of vectors for efficient expression of human purine nucleoside phosphorylase in skin fibroblasts from enzyme-deficient humans. Proc Natl Acad Sci USA 1988;85:6851–6855.PubMedGoogle Scholar
  188. 188.
    Hoeben RC, van der Jagt RCM, Schoute F, et al. Expression of functional factor VIII in primary skin fibroblasts after retrovirus-mediated gene transfer. J Biol Chem 1990;265:7318–7323.PubMedGoogle Scholar
  189. 189.
    Moullier P, Bohl D, Heard J-M, Danos O. Correction of lysosomal storage in the liver and spleen of MPS VII mice by implantation of genetically modified skin fibroblasts. Nature Genet 1993;4:154–159.PubMedGoogle Scholar
  190. 190.
    Heartlein MW, Roman VA, Jiang J-L, et al. Long-term production and delivery of human growth hormone in vivo. Proc Natl Acad Sci USA 1994;91:10967–10971.PubMedGoogle Scholar
  191. 191.
    Veelken H, Jesuiter H, Mackensen A, et al. Primary fibroblasts from human adults as target cells for ex vivo transfection and gene therapy. Hum Gene Ther 1994;5:1203–1210.PubMedGoogle Scholar
  192. 192.
    Krueger GG, Morgan JR, Jorgensen CM, et al. Genetically modified skin to treat disease: potential and limitations. J Invest Dermatol 1994;103:76S–84S.PubMedGoogle Scholar
  193. 193.
    Naughton BA, Dai y, Sibanda B, et al. Long-term expression of a retrovirally introduced beta galactosidase gene in rodent cells implanted in vivo using biodegradable polymer meshes. Som Cell Mol Genet 1992;18:451–462.Google Scholar
  194. 194.
    Frueger GG, Liimatta AP, Jorgensen CM, Morgan JR. Prolongation of genetically modified human fibroblasts in culture in an extracellular nylon matrix enhances survival in vivo. J Invest Dermatol 1996;106:806.Google Scholar
  195. 195.
    Taniguchi H, Nakauchi H, Iwata H, Amemiya H, Fukao K. Treatment of diabetic mice with encapsulated fibroblasts producing human proinsulin. Transplant Proc 1992;24:2977–2978.PubMedGoogle Scholar
  196. 196.
    Simpson AM, Band F, Clarke RA, Bum Al, Tuch BE. Transformation of pituitary and fibroblast cell lines using human insulin c-DNA and a dexamethasone-inducible promoter. Transplant Proc 1993;25:2915–2916.PubMedGoogle Scholar
  197. 197.
    Kawakami Y, Yamaoka T, Hirochika R, Yamashita K, Itakura M, Nakauchi H. Somatic gene therapy for diabetes with an immunological safety system for complete removal of transplanted cells. Diabetes 1992;41:956–961.PubMedGoogle Scholar
  198. 198.
    Yoskimoto K, Muakami R, Moritani M, et al. Loss of ganciclovir sensitivity by exclusion of Thymidine kinase gene from transplanted proinsulin-producing fibroblasts as a gene therapy model. Gene Ther 1996;3:230–234.Google Scholar
  199. 199.
    Selden RF, Skoskiewicz MJ, Russell PS, Goodman HM. Regulation of insulin-gene expression. N Engl J Medicine 1987;317:1067–1076.Google Scholar
  200. 200.
    Kasten-Jolly J, Aubrey MT, Conti DJ, Rosano TG, Ross IS, Freed BM. Reversal of hyperglycaemia in diabetic NOD mice by human proinsulin gene therapy. Transplant Proc 1997;29:2216–2218.PubMedGoogle Scholar
  201. 201.
    Smeekens SP, Montag AG, Thomas G, Albiges-Rizo C, et al. Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3. Proc Natl Acad Sci USA 1992;89:8822–8826.PubMedGoogle Scholar
  202. 202.
    Vollenweider F, Kaufmann J, Irminger J-C, Halban PA. Processing of proinsulin by furin, PC2 and PC3 in (co)transfected COS (monkey Kidney) cells. Diabetes 1995;44:1075–1080.PubMedGoogle Scholar
  203. 203.
    Kaumann JE, Irminger J-C, Mungall J, Halban PA. Proinsulin conversion in GH3 cells after coexpression of human proinsulin with the endoproteases PC2 and/orPC3. Diabetes 1997;46:978–982.Google Scholar
  204. 204.
    Groskreutz DJ, Slikowski MX, Gorman MX. Genetically engineered proinsulin constitutively processed and secreted as mature, active insulin. J Bio Chem 1994;269:6241–6245.Google Scholar
  205. 205.
    Alpert S, Hanahan D, Tietelman G. Hybrid insulin gene reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 1988;53:295–308.PubMedGoogle Scholar
  206. 206.
    Teitelman G, Lee JK. Cell lineage analysis of pancreatic islet cell development: glucagon and insulin cells arise from catecholaminergic precursors present in the pancreatic duct. Dev Biol 1987;121:454–466.PubMedGoogle Scholar
  207. 207.
    Devaskar SU, Giddings SJ, Rajakumar PA, Carnaghi LR, Menon RK, Zahm DS. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem 1994;269:8445–8454.PubMedGoogle Scholar
  208. 208.
    Furth J, Gadsen EL, Upton AC. ACTH secreting transplantable pituitary tumors. Proc Soc Exp Biol Med 1953;84:243–254.Google Scholar
  209. 209.
    Moore H-P, Walker MD, Lee F, Kelly RB. Expression a human proinsulin cDNA in a mouse ACTH-secreting cell: intracellular storage, proteolytic processing, and secretion on simulation. Cell 1983;35:531–538.PubMedGoogle Scholar
  210. 210.
    Hughes SD, Quaade C, Milburn JL, Cassidy LC, Newgard CB. Expression of normal and novel glucokinase mRNA in anterior pituitary and islet cells. J Biol Chem 1991;266:4521–4530.PubMedGoogle Scholar
  211. 211.
    Smeekens SP, Avruch AS, LaMendola J, Chan SJ, Steiner DF. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islet of Langerhans. Proc Natl Acad Sci USA 1991;88:340–344.PubMedGoogle Scholar
  212. 212.
    Vindrola O, Lindberg I. Biosynthesis of the prohormone convertase mPC1 in AtT-20 cells. Mol Endocrinol 1992;6:1088–1094.PubMedGoogle Scholar
  213. 213.
    Stewart C, Taylor NA, Docherty K, Bailey Cl. Insulin delivery by somatic cell gene therapy. J Mol Endocrinol 1993;11:335–341.PubMedGoogle Scholar
  214. 214.
    Hughes SDF, Johnson JH, Quaade C, Newgard CB. Engineering of glucose-simulated insulin secretion and biosynthesis in non-islet cells. Proc Natl Acad Sci USA 1992; 89:688–692.PubMedGoogle Scholar
  215. 215.
    Irminger JC, Vollenweider FM, Neerman-Arbez M. Human proinsulin conversion in the regulated and the constitutive pathway of transfected AtT20 cells. J Biol Chem 1994;269:1756–1762.PubMedGoogle Scholar
  216. 216.
    Kaufmann JE, Irminger JC, Halban PA. Sequence requirement for proinsulin processing at the Bchain/C-peptide junction. Biochem J 1995;310:869–874.PubMedGoogle Scholar
  217. 217.
    Beltran del Rio H, Schnedl WJ, Ferber S, et al. Pancreatic Islet Transplantation 1994;Vol 1:169–178.Google Scholar
  218. 218.
    Lipes MA, Cavalli AM, Rhodes CJ, Skelly R, Cooper EM. Engineering insulin secretion in non-islet cells for beta-cell replacement in IDDM. Diabetes 1996;45 (Suppl 2): 23A.Google Scholar
  219. 219.
    Liang Y, Jetton T, Zimmerman E, Najafi H, Matschinsky FM, Magnuson MA. Effects of alternate RNA splicing on glucokinase isoform activates in the pancreatic islet, liver and pituitary. J Biol Chem 1991;266:6999–7007.PubMedGoogle Scholar
  220. 220.
    Magnuson MA. Tissue-specific regulation of glucokinase gene expression. J Cell Biochem 1992; 48:115–121.PubMedGoogle Scholar
  221. 221.
    Vollenweider F, Irminger J-C, Gross DJ, Villa-Komaroff L, Halban PA. Processing of proinsulin by transfected hepatoma (FAO) cells. J Biol Chem 1992;267:14629–14636.PubMedGoogle Scholar
  222. 222.
    Simpson AM, Tuch BE, Swan MA, Tu J, Marshell GM. Functional expression of the human insulin gene in a human hepatoma cell line (HEP G2). Gene Ther 1995;2:223–231.PubMedGoogle Scholar
  223. 223.
    Kolodka TM, Finegold M, Moss L, Woo SLC. Gene therapy for diabetes mellitus in rats by hepatic expression of insulin. Proc Natl Acad Sci USA 1995;92:3293–3297.PubMedGoogle Scholar
  224. 224.
    Dhawan J, Pan LC, Pavlath GK, Travis MA, Lanctot AM, Blau HM. System delivery of human growth hormone by injection of genetically engineered myoblasts. Science 1991;254:1509–1512.PubMedGoogle Scholar
  225. 225.
    Barr E, and Leiden JM. System delivery of recombinant protein by genetically modified myoblasts. Science 1991;254:1507–1509.PubMedGoogle Scholar
  226. 226.
    Roman M, Axelrod JH, Dai Y, Naviaux RK, Friedmann T, and Verma IM. Circulating human or canine factor IX from retrovirally transduced primary myoblasts and established myoblast cell line grafted into murine skeletal muscle. Som Cell Mol Genet 1992;18:247–258.Google Scholar
  227. 227.
    Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247:1465–1468.PubMedGoogle Scholar
  228. 228.
    Bartlett RJ, Secore Si, Denis M, et al. Toward the biologic release of human insulin from skeletal muscle. Transplant Proc 1997;29:2199–2200.PubMedGoogle Scholar
  229. 229.
    Blume N, Petersen JS, Andersen LC, et al. Immature transformed rat islet beta-cells differentially express C-peptides from genes coding for I and II as well as a transfected human insulin gene. Mol Endocrinol 1992;6:299–307.PubMedGoogle Scholar
  230. 230.
    Clark SA, Quaade C, Constandy H, et al. Novel insulinoma cell lines produced by iterative engineering of GLUT, glucokinase, and human insulin expression. Diabetes 1997;46:958–967.PubMedGoogle Scholar
  231. 231.
    Hohmeier HE, Beltran del Rio H, Clark SA, Henkel-Rieger R, Normington F, Newgard CB. Regulation of insulin secretion from novel engineered insulinoma cell lines. Diabetes 1997;46:968–977.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Alberto Hayek
    • 1
  • Gillian M. Beattie
    • 1
  • Fred Levine
    • 1
  1. 1.University of California at San Diego School of MedicineLa JollaUSA

Personalised recommendations