Advertisement

Gene Therapy for Acute Lung Injury

  • Serpil Erzurum
  • Patricia Lemarchand
Chapter
  • 57 Downloads

Abstract

The adult respiratory distress syndrome (ARDS) is an acute clinical illness characterized by non-cardiogenic pulmonary edema and refractory hypoxemia. Injury to the alveolar-capillary barrier and lung inflammation lead to intrapulmonary shunting of blood, surfactant depletion, and pulmonary vascular obstruction. Although the exact incidence of ARDS is unknown, there is little doubt that tens of thousands of patients develop this syndrome annually in the United States (1). The mortality associated with ARDS exceeds 50% in most reports (1). Numerous mediators contribute to the pathologic response, and genes encoding antioxidant enzymes, anti-inflammatory cytokines, antiproteases and other protective proteins have been identified to treat acute injury in the lung. The most direct approach would be to systematically administer protective proteins directly. However, there are several potential advantages of giving therapeutic genes rather than giving proteins: 1) transfer of genes encoding intracellular proteins produces higher levels of therapeutic proteins within the cell, 2) gene transfer could be cell specific with modified vectors, 3) gene transfer may have less risk of antigenicity depending upon the delivery systems chosen and 4) gene transfer may be less expensive than giving purified or recombinant proteins.

Keywords

Nitric Oxide Nitric Oxide Gene Therapy Acute Lung Injury Lung Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. 1.
    Fulkerson WJ, Maclntyre N, Stamler J, and Crapo JD. Pathogenesis and treatment of the Adult Respiratory Distress Syndrome. Arch Intern Med. 1996; 156:29–38.PubMedCrossRefGoogle Scholar
  2. 2.
    Erzurum SC, Danel C, Gillissen A, Chu CS, Trapnell BC, and Crystal RG. In Vivo antioxidant gene expression in human airway epithelium of normal individuals exposed to 100% O2. J Appl Physiol. 1993;75:1256–1262.PubMedGoogle Scholar
  3. 3.
    Yoo JH, Erzurum SC, Hay JG, Lemarchand P, and Crystal RG. Vulnerability of the human airway epithelium to hyperoxia. J Clin Invest 1994;93:297–302.PubMedCrossRefGoogle Scholar
  4. 4.
    Davis WB, Rennard SI, Bitterman PB, and Crystal RG. Pulmonary oxygen toxicity: early reversible changes in human alveolar structures induced by hyperoxia. N Engl J. Med. 1983;309:878–883.PubMedCrossRefGoogle Scholar
  5. 5.
    Deneke SM and Fanburg BL. Normobaric oxygen toxicity of the lung. N. Engl. J. Med. 1980;303:76–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Wispe JR, Warner BB, Clark JC, Dey CR, Neuman J, Glasser SW, Crapo JD, Chang LY, and Whitsett JA. Human Mn-superoxide dismutase in pulmonary epithelial cells of. J Biol Chem. 1992;267:23937–23941.PubMedGoogle Scholar
  7. 7.
    White CW, Avraham KB, Shanley PF, and Groner Y. Transgenic mice with expression of elevated levels of copper-zinc. J Clin Invest 1991;87:2162–2168.PubMedCrossRefGoogle Scholar
  8. 8.
    Engelhardt JF. Redox-mediated gene therapies for environmental injury: approaches and concepts. Antioxidants & Redox Signaling 199; 1:5–28.Google Scholar
  9. 9.
    Danel C, Erzurum SC, Prayssac P, Eissa NT, Crystal RG, Herve P, Baudet B, Mazmanian M, and Lemarchand P. Gene therapy for oxidant injury-related diseases: adenovirus-mediated transfer of superoxide dismutase and catalase cDNAs protects against hyperoxia but not against ischemia-reperfiision lung injury. Hum Gene Ther. 1998;9:1487–1496.PubMedCrossRefGoogle Scholar
  10. 10.
    Otterbein LE, Kolls JK, Mantell LL, Cook JL, Alam J, and Choi AM. Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. Clin Invest. 1999;103:1047–1054.CrossRefGoogle Scholar
  11. 11.
    Wink DA, Hanbauer I, Grisham MB, Laval F, Nims RW, Laval J, Cook J, Pacelli R, Liebmann J, Krisma M, et al. Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cell Regul. 1996;34:159–187.PubMedCrossRefGoogle Scholar
  12. 12.
    Howlett CE, Hutchison JS, Veinot JP, Chiu A, Merchant P, Fliss H. Inhaled nitric oxide protects against hyperoxia-induced apoptosis in rat lungs. Am. J. Physiol. 1999;277:L596–L605.PubMedGoogle Scholar
  13. 13.
    Sanders SP. Nitric oxide in asthma. Am. J. Respir. Cell Mol. Biol. 1999;21:147.PubMedGoogle Scholar
  14. 14.
    Raychaudhuri B, Dweik RA, Connors MJ, Buhrow L, Malur A. Nitric oxide blocks nuclear factor-kB activation in alveolar macrophages. Am J Resp Cell Mol Biol. 1999;21:311–316.Google Scholar
  15. 15.
    van der Vliet, A, Eiserich JP, Shigenaga MK, Cross CE. Reactive nitrogen species and tyrosine nitration in the respiratory tract. Am J Respir Crit Care Med. 1999;160:1–9.PubMedGoogle Scholar
  16. 16.
    Stuehr, DJ. Nitric oxide synthesis and breakdown. Biochem. Biophys. Acta. 1999;1411:217PubMedCrossRefGoogle Scholar
  17. 17.
    Guo, FH, De Raeve HR, Rice TW, Stuehr DJ, Thunnissen FBJM, and Erzurum SC. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Natl Acad Sci USA. 1995;92:7809–7813.PubMedCrossRefGoogle Scholar
  18. 18.
    Repine, JE, Bast A, Lankhorst I, and The oxidative stress study group. Oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997;156:341–357.PubMedGoogle Scholar
  19. 19.
    Van der Vliet A, Eiserich JP, Shigenaga MK, Cross CE. Reactive Nitrogen species and tyrosine nitration in the respiratory tract. Am J Respir Crit Care Med. 1999;160:1–9.PubMedGoogle Scholar
  20. 20.
    Akaike T, Noguchi Y, Ijiri S, Setoguchi K, Suga M, Zheng YM, Dietschold B, and Maeda H. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA. 1996;93:2448–2453.PubMedCrossRefGoogle Scholar
  21. 21.
    Karaupia G, Chen JH, Mahalingam S, Nathan CF, and MacMicking JD. Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. J Exp Med. 1998;188:1541–1546.CrossRefGoogle Scholar
  22. 22.
    Malinski T, Taha Z, Grunfeld S, Patton S, Kapturczak M, and Tomboulian. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun. 1993;193:1076–1082.PubMedCrossRefGoogle Scholar
  23. 23.
    Dweik RA, Laskowski D, Abu-Soud HM, Kaneko FT, Hutte R, Stuehr DJ, Erzurum SC. Nitric oxide synthesis in the lung. J Clin Invest. 1998;101:660–666.PubMedCrossRefGoogle Scholar
  24. 24.
    Gaston B, Reilly J, Drazen JM, Fackler J, Ramdev P, et al. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci USA. 1993;90:10957–10961.PubMedCrossRefGoogle Scholar
  25. 25.
    Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998;391:393–397.PubMedCrossRefGoogle Scholar
  26. 26.
    Eiserich JP, Estevez AG, Bamberg TV, Ye YZ, Chumley PH, et al. Microtubule dysfunction by posttranslational nitrotyrosination of a-tubulin: a nitric oxide dependent mechanism of cellular injury. Proc Natl Acad Sci USA. 1999;96:6365–6370.PubMedCrossRefGoogle Scholar
  27. 27.
    Ho YS, Dey MS, Crapo JD. Antioxidant enzyme expression in rat lungs during hyperoxia. Am J Physiol. 1996;270:L810–L818.PubMedGoogle Scholar
  28. 28.
    Carlsson LM, Jonsson J, Edlund T, Marklund SL. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA 1995;92:6264–6268.PubMedCrossRefGoogle Scholar
  29. 29.
    Storz G, Tartaglia LA, Ames BN. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science. 1990;248:189–194.PubMedCrossRefGoogle Scholar
  30. 30.
    Binion DG, Fu S, Ramaujam KS, Chai YC, Dweik RA, Drazba J A, Wase JG, Ziats NP, Erzurum SC, Wilson KT. iNOS expression in human intestinal microvascular endothelial cells inhibits leukocyte adhesion. Am J Physiol. 1998;275:G592–G603.PubMedGoogle Scholar
  31. 31.
    Cucchiaro G, Tatum AH, Brown MC, Camporesi EM, Daucher JW, Hakim T.S.Am J Physiol. 199921.L636–L644.Google Scholar
  32. 32.
    Capellier G, Maupoil V, Boillot A, Kantelip J, Rochette L, Reguard J, Barale F. L-NAME aggravates pulmonary oxygen toxicity in rats. Eur Respir J. 1996;9:2531–2536.PubMedCrossRefGoogle Scholar
  33. 33.
    Thomassen MJ, Buhrow LT, Connors MJ, Kaneko FT, Erzurum SC, Kavuru MS. Nitric oxide inhibits inflammatory cytokine production by human alveolar macrophages. Am J Respir Cell Mol Biol. 1997;17:279–283.PubMedGoogle Scholar
  34. 34.
    Kim YM, Talanian RV, Billiar TR. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem. 1997;272:31138–31148.PubMedCrossRefGoogle Scholar
  35. 35.
    Champion HC, Bivalacqua TJ, D Souza FM, Ortiz LA, Jeter JR, Toyoda K, Heistad DD, Hyman AL, Kadowitz PJ. Gene transfer of endothelial nitric oxide synthase to the lung of the mouse in vivo: effect on agonist-induced and flow-mediated vascular responses. Circ Res. 1999;84:1422–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Ooboshi H, Chu Y, Rios CD, Faraci FM, Davidson BL, Heistad DD. Altered vascular function after adenovirus medicated overexpression of endothelial nitric oxide synthase. Am J Physiol. 1997;273:H265–70.PubMedGoogle Scholar
  37. 37.
    Janssens SP, Bloch KD, Nong Z, Gerard RD, Zoldhelyi P, Collen D. Adenoviral mediated transfer of the human endothelial nitric oxide synthase gene reduces acute hypoxic pulmonary vasoconstriction in rats. J Clin Invest. 1996;98:317–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Haddad IY, Sorscher EJ, Garver RI, Hong J, Tzeng E, Matalon S. Modulation of adenovirus mediated gene transfer by nitric oxide. Am J Resp Cell Mol Biol. 1997;16:501–9.Google Scholar
  39. 39.
    Liu M, Slutsky AS. Anti-inflammatory therapies: application of molecular biology. Intensive Care Medicine. 1997;23:718–731.PubMedCrossRefGoogle Scholar
  40. 40.
    Xing Z, Jordana M, Gauldie J, Wang J. Cytokines and pulmonary inflammatory and immune diseases. Hist Histopath. 1999; 14:185–201.Google Scholar
  41. 41.
    Xing Z, Ohkawara Y, Jordana M, Graham FL, Gauldie J. Adenoviral vector-mediated interleukin-10 expression in vivo. Gene Ther. 1997;4:140–149.PubMedCrossRefGoogle Scholar
  42. 42.
    Kolls JK, Lei D, Vazquez C, Odom G, Summer WR, Nelson S, Shellito J. Exacerbation of murine Pneumocystis carinii infection by. Am J Resp Cell Mol Biol. 1997;16:112–118.Google Scholar
  43. 43.
    Conary JT, Parker RE, Christman BW, Faulks RD, King GA, Meyrick BO, Brigham KL. Protection of rabbit lungs from endotoxin injury by in vivo hyperexpression of the prostaglandin G/H synthase gene. J Clin Invest. 1994;93:1834–1840.PubMedCrossRefGoogle Scholar
  44. 44.
    Buhl R, Meyer A, Vogelmeier C. Oxidant-protease interaction in the lung: prospects for antioxidant therapies. Chest. 1996; 110:267S–272S.PubMedCrossRefGoogle Scholar
  45. 45.
    Lemarchand P, Jaffe HA, Danel C, Cid MC, Kleinman HK, Stratford-Perricaudet LD, Perricaudet M, Pavirani A, Lecocq JP, Crystal RG. Adenovirus-mediated transfer of a recombinant human alpha 1-antitrypsin cDNA to human endothelial cells. Proc Natl Acad Sci USA. 1992;89:6482–6486.PubMedCrossRefGoogle Scholar
  46. 46.
    Canonico AE, Brigham KL, Carmichael LC, Plitman JD, King GA, Blackwell TR, Christman JW. Plasmid-liposome transfer of the alpha 1 antitrypsin gene to cystic. Am JRespir Cell Mol Biol. 1996; 14, 348–355.Google Scholar
  47. 47.
    Hattori N, Sisson TH, Xu Y, Simon RH. Upregulation of fibrinolysis by adenovirus-mediated transfer of urokinase-type plasminogen activator genes to lung cells in vitro and in vivo. Hum Gene Ther. 1999; 10:215–222.PubMedCrossRefGoogle Scholar
  48. 48.
    Bohrer H, Qiu F, Zimmermann T, Zhang Y, Jllmer T, Mannel D, Bottiger BW, Stern DM, Waldherr R, Saeger HD, Ziegler R, Bierhaus A, Martin E, Nawroth PP. Role of NFkappaB in the mortality of sepsis. J Clin Invest. 1997; 100:972–985.PubMedCrossRefGoogle Scholar
  49. 49.
    Griesenbach U, Scheid P, Hillery E, de Martin R, Huang L, Geddes DM, Alton EW. Anti-inflammatory gene therapy directed at the airway epithelium. Gene Ther. 2000;7:306–313.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Serpil Erzurum
    • 1
  • Patricia Lemarchand
    • 2
  1. 1.Pulmonary and Critical Care Medicine, and Cancer BiologyLerner Research Institute, Cleveland Clinic FoundationClevelandUSA
  2. 2.Faculte de Medecine Necker-Enfants MaladesINSERM E00-16ParisFrance

Personalised recommendations