Signal Transduction Pathways in Acute Lung Injury: Nf-κB and Ap-1

  • Thomas P. Shanley
  • Hector R. Wong
Part of the Molecular and Cellular Biology of Critical Care Medicine book series (MCCM, volume 1)


Our understanding of the intermediary events that occur between the reception of a biological signal at the cell membrane, and the eventual conversion of that signal to a change in gene expression at the nuclear level (i.e. signal transduction), has grown immensely over the last decade. Elucidation of signal transduction pathways in lung parenchymal cells and alveolar macrophages holds the promise of not only understanding the molecular mechanisms that contribute to acute lung injury (ALI), but also of providing novel therapeutic targets. Protein phosphorylation is the key regulatory mechanism in these pathways and the human genome has been estimated to encode more than one thousand protein kinases. An exhaustive review of the many signal transduction pathways in the lung is beyond the scope of this single chapter. Accordingly, we have focused this chapter on two pathways believed to be particularly relevant to the pathophysiology of ALI: the nuclear factor-κb (NF-kB) pathway and the activator protein-1 (AP-1) pathway.


Acute Lung Injury Alveolar Macrophage Secretory Leukocyte Protease Inhibitor Human Respiratory Epithelium Pyridinyl Imidazole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baldwin, A. S. (1996) The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 14, 649–681PubMedCrossRefGoogle Scholar
  2. 2.
    Blackwell, T. S., and Christman, J. W. (1997) The role of nuclear factor-κB in cytokine gene regulation. Am J Respir Cell Mol Biol 17, 3–9PubMedGoogle Scholar
  3. 3.
    Ghosh, S., May, M. J., and Koop, E. B. (1998) NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16, 225–260PubMedCrossRefGoogle Scholar
  4. 4.
    Abraham, E. (2000) NF-kappaB activation. Crit Care Med 28, (Suppl) N100–104PubMedCrossRefGoogle Scholar
  5. 5.
    Wong, H. R., Ryan, M., and Wispé, J. R. (1997) The heat shock response inhibits inducible nitric oxide synthase gene expression by blocking Iκ-B degradation and NF-κB nuclear translocation. Biochem Biophys Res Comm 231, 257–263PubMedCrossRefGoogle Scholar
  6. 6.
    Wong, H. R., Ryan, M., and Wispé, J. R. (1997) Stress response decreases NF-κB nuclear translocation and increases I-κBα and expression in A549 cells. J Clin Invest 99, 2423–2428PubMedCrossRefGoogle Scholar
  7. 7.
    Mazor, R. L., Menendez, I. Y., Ryan, M. A., Fiedler, M. A., and Wong, H. R. (2000) Sesquiterpene lactones are potent inhibitors of interleukin-8 gene expression in cultured human respiratory epithelium. Cytokine 12, 239–245PubMedCrossRefGoogle Scholar
  8. 8.
    Imbert, V., Rupec, R. A., Livolsi, A., Pahl, H. L., Traenckner, E. B., Mueller-Dieckmann, C., Farahifar, D., Rossi, B., Auberger, P., Bauerle, P. A., and Peyron, J. F. (1996) Tryosine phosphorylation of IκBα activates NF-κB without proteolytic degradation of IκBα. Cell 86, 787–798PubMedCrossRefGoogle Scholar
  9. 9.
    Beraud, C., Henzel, W. J., and Baeuerle, P. A. (1999) Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-κB activation. Proc Natl Acad Sci 96, 429–434PubMedCrossRefGoogle Scholar
  10. 10.
    Bender, K., Gottlicher, M., Whiteside, S., Rahmsdorf, H. J., and Herrlich, P. (1998) Sequential DNA damage-independent and -dependent activation of NF-κB by UV. EMBO J, 17 5170–5181PubMedCrossRefGoogle Scholar
  11. 11.
    Ito, C. Y., Kazantsev, A. G., and Baldwin, A. S. (1994) Three NF-κB sites in the IκB-α: promoter are required for induction of gene expression by TNFα. Nucleic Acids Res 22, 3787–3792PubMedCrossRefGoogle Scholar
  12. 12.
    Arenzana-Seisdedos, F., Thompson, J., Rodriguez, M. S., Bachelerie, F., Thomas, D., and Hay, R. T. (1995) Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B. Mol Cell Biol 15, 2689–2696PubMedGoogle Scholar
  13. 13.
    Thompson, J. E., Phillips, R. J., Erdjument-Bromage, H., Tempst, P., and Ghosh, S. (1995) IκBß regulates the persistent response in a biphasic activation of NF-κB. Cell 80, 573–582PubMedCrossRefGoogle Scholar
  14. 14.
    Karin, M., and Ben-Neriah, Y. (2000) Phosphorylation meets ubiquiti-nation: the control of NF-κB activity. Annu Rev Immunol 18, 621–663PubMedCrossRefGoogle Scholar
  15. 15.
    DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., and Karin, M. (1997) A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388, 548–554PubMedCrossRefGoogle Scholar
  16. 16.
    Mercurio, F., Zhu, H., Murray, B. W., Shevchenko, A., Bennett, B. L., Li, J. W., Young, D. B., Barbosa, M., and Mann, M. (1997) IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278, 860–866PubMedCrossRefGoogle Scholar
  17. 17.
    Takeda, K., Takeuchi, O., Tsujimura, T., Itami, S., Adachi, O., Kawai, T., Sanjo, H., Yoshikawa, K., Terada, N., and Akira, S. (1999) Limb and skin abnormalities in mice lacking IKKα. Science 284, 313–316PubMedCrossRefGoogle Scholar
  18. 18.
    Li, Q., Antwerp, D. V., Mercurio, F., Lee, K. F., and Verma, I. M. (1999) Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284, 321–325PubMedCrossRefGoogle Scholar
  19. 19.
    Hu, Y., Baud, V., Delhase, M., Zhang, P., Deerinck, T., Ellisman, M., Johnson, R., and Karin, M. (1999) Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science 284, 316–320PubMedCrossRefGoogle Scholar
  20. 20.
    Li, Z. W., Chu, W., Hu, Y., Delhase, M., Deerinck, T., Ellisman, M., Johnson, R., and Karin, M. (1999) The IKKß subunit of IκB kinase (IKK) is essential for nuclear factor κB activation and prevention of apoptosis. J Exp Med 189, 1839–1845PubMedCrossRefGoogle Scholar
  21. 21.
    Ware, L., and Mathhay, M. (2000) The acute respiratory distress syndrome. N Engl J Med 342, 1334–1249PubMedCrossRefGoogle Scholar
  22. 22.
    Shanley, T. P. (1998) Cytokines in inflammatory diseases: Role and therapeutic targets in acute respiratory distress syndrome. Emerging Therapeutic Targets 2, 1–16CrossRefGoogle Scholar
  23. 23.
    Schutte, H., Lohmeyer, J., Rosseau, S., Ziegler, S., Siebert, C, Kielisch, H., Pralle, H., Grimminger, F., Morr, H., and Seeger, W. (1996) Bronchoalveolar and systemic cytokine profiles in patients with ARDS, severe pneumonia and cardiogenic pulmonary oedema. Eur Respir J 9, 1858–1867PubMedCrossRefGoogle Scholar
  24. 24.
    Miller, E. J., Cohen, A. B., Nagao, S., Griffith, D., Maunder, R. J., Martin, T. R., Weiner-Kronish, J. P., Sticherling, M., Christophers, E., and Matthay, M. A. (1992) Elevated levels of NAP-1/interleukin-8 are present in the airspaces of patients with the adult respiratory distress syndrome and are associated with increased mortality. Am Rev Respir Dis 146, 427–432PubMedGoogle Scholar
  25. 25.
    Donnely, S. C, Strieter, R. M., Kunkel, S. M., Walz, A., Robertson, C. R., Carter, D. C., Grant, I. S., Pollock, A. J., and Haslett, C. (1993) Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 341, 643–647CrossRefGoogle Scholar
  26. 26.
    Mukaida, N., Okamoto, S., Ishikawa, Y., and Matsushima, K. (1994) Molecular mechanisms of interleukin-8 gene expression. J Leukoc Biol 56, 554–558PubMedGoogle Scholar
  27. 27.
    Allen, G. A., Menendez, I., Ryan, M., Mazor, R., Wispé, J., Fiedler, M., and Wong, H. R. (2000) Hyperoxia synergistically increases TNF-α-induced interleukin-8 gene expression in A549 cells. Am J Physiol 278, L253–L260Google Scholar
  28. 28.
    Blackwell, T. S., Yull, F. E., Chen, C. L., Venkatakrishnan, A., Blackwell, T. R., Hicks, D. J., Lancaster, L. H., Christman, J. W., and Kerr, L. D. (2000) Multiorgan nuclear factor kappa B activation in a transgenic mouse model of systemic inflammation. Am J Respir Crit Care Med 162, 1095–1101PubMedGoogle Scholar
  29. 29.
    Amory-Rivier, C. F., Mohler, J., Bedos, J. P., Azoulay-Dupuis, E., Henin, D., Muffat-Joly, M., Carbon, C., and Moine, P. (2000) Nuclear factor-kappaB activation in mouse lung lavage cells in response to Streptococcus pneumoniae pulmonary infection. Crit Care Med 28, 3249–3256PubMedCrossRefGoogle Scholar
  30. 30.
    Blackwell, T. S., Lancaster, L. H., Blackwell, T. R., Venkatakrishnan, A., and Christman, J. W. (1999) Differential NF-kappaB activation after intra-tracheal endotoxin. Am J Physiology 277, L823–L830Google Scholar
  31. 31.
    Lentsch, A. B., Jordan, J. A., Czermak, B. J., Diehl, K. M., Younkin, E. M., Sarma, V., and Ward, P. A. (1999) Inhibition of NF-kappaB activation and augmentation of IkappaBbeta by secretory leukocyte protease inhibitor during lung inflammation. Am J Pathol 154, 239–247PubMedCrossRefGoogle Scholar
  32. 32.
    Lentsch, A. B., Czermak, B. J., Jordan, J. A., and Ward, P. A. (1999) Regulation of acute lung inflammatory injury by endogenous IL-13. J Immunol 162, 1071–1076PubMedGoogle Scholar
  33. 33.
    Moine, P., Shenkar, R., Kaneko, D., Tulzo, Y. L., and Abraham, E. (1997) Systemic blood loss affects NF-kappa B regulatory mechanisms in the lungs. Am J Physiol 273, L185–L192PubMedGoogle Scholar
  34. 34.
    Shenkar, R., and Abraham, E. (1999) Mechanisms of lung neutrophil activation after hemorrhage or endotoxemia: roles of reactive oxygen intermediates, NF-kappa B, and cyclic AMP response element binding protein. J Immunol 163, 954–962PubMedGoogle Scholar
  35. 35.
    Yoshidome, H., Kato, A., Edwards, M. J., and Lentsch, A. B. (1999) Interleukin-10 inhibits pulmonary NF-kappaB activation and lung injury induced by hepatic ischemia-reperfusion. Am J Physiol 277, L919–923PubMedGoogle Scholar
  36. 36.
    Lentsch, A. B., Czermak, B. J., Bless, N. M., Rooijen, N. V., and Ward, P. A. (1999) Essential role of alveolar macrophages in intrapulmonary activation of NF-kappaB. Am J Respir Cell Mol Biol 20, 692–698PubMedGoogle Scholar
  37. 37.
    Ross, S. D., Kron, I. L., Gangemi, J. J., Shockey, K. S., Stoler, M., Kern, J. A., Tribble, C. G., and Laubach, V. E. (2000) Attenuation of lung reperfusion injury after transplantation using an inhibitor of nuclear factor-kappaB. Am J Physiol 279, L528–L536Google Scholar
  38. 38.
    Schwartz, M. D., Moore, E. E., Moore, F. A., Shenkar, R., Moine, P., Haenel, J. B., and Abraham, E. (1996) Nuclear factor-κB is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med 24, 1285–1292PubMedCrossRefGoogle Scholar
  39. 39.
    Moine, P., McIntyre, R., Schwartz, M. D., Kaneko, D., Shenkar, R., Le Tulzo, Y., Moore, E. E., and Abraham, E. NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome. (2000) Shock 13, 85–91PubMedCrossRefGoogle Scholar
  40. 40.
    Bohrer, H., Qiu, F., Zimmerman, T., Zhang, Y., Jllmer, T., Mannel, D., Bottiger, B. W., Stern, D., Waldherr, R., Saeger, H.-D., Ziegler, R., Bierhaus, A., Martin, E., and Nawtroth, P. P. (1997) Role of NF-κB in the mortality of sepsis. J Clin Invest 100, 972–985PubMedCrossRefGoogle Scholar
  41. 41.
    Karin, M. (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270, 16483–16486PubMedGoogle Scholar
  42. 42.
    Karin, M., Liu, Z., and Zandi, E. (1997) AP-1 function and regulation. Curr Opin Cell Biol 9, 240–246PubMedCrossRefGoogle Scholar
  43. 43.
    Angel, P., and Karin, M. (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072, 129–157PubMedGoogle Scholar
  44. 44.
    Hai, T., and Curran, T. (1991) Cross-family dimerization of transcription factors fos/jun and ATF/CREB alters DNA-binding specificity. Proc Natl Acad Sci USA 88, 3720–3724PubMedCrossRefGoogle Scholar
  45. 45.
    Ziff, E. B. (1990) Transcription factors: a new family gathers at the cAMP response site. Trends Genet 6, 69–72PubMedCrossRefGoogle Scholar
  46. 46.
    Davis, R. (2000) Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252PubMedCrossRefGoogle Scholar
  47. 47.
    Herlaar, E. and Brown, Z. (1999) p38 MAPK signaling cascade in inflammatory disease. Mol Med Today 5, 439–447PubMedCrossRefGoogle Scholar
  48. 48.
    Ip, Y. T., and Davis, R. J. (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Curr Opin Cell Biol 10, 205–219PubMedCrossRefGoogle Scholar
  49. 49.
    Su, B., and Karin, M. (1996) Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol 8, 402–411PubMedCrossRefGoogle Scholar
  50. 50.
    Garrington, T. P., and Johnson, G. L. (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11, 211–218PubMedCrossRefGoogle Scholar
  51. 51.
    Keyse, S. M. (1998) Protein phosphatases and the regulation of MAP kinase activity. Semin Cell Dev Biol 9, 143–152PubMedCrossRefGoogle Scholar
  52. 52.
    Read, M. A., (1997) Tumor necrosis factor a-induced E-selectin expression is activated by the nuclear factor-κB and c-jun N-terminal kinase/p38 mitogen-kinase activated protein kinase pathways. J Biol Chem. 272, 2753–2761PubMedCrossRefGoogle Scholar
  53. 53.
    Nick, J. A., Avdi N. J., Young, S. K., Lehman, L. A., McDonald, P. P., Frasch, S. C., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (1999) Selective activation and functional significance of p38α mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. J Clin Invest 103, 851–858PubMedCrossRefGoogle Scholar
  54. 54.
    Bauer, G. J., Garcia, I. and Maier, R. V. (1997) Activation of stress-activated protein kinase is a mechanism of priming in macrophages. Surg Forum 48, 43–45Google Scholar
  55. 55.
    Ridley, S. H. (1997) Actions of IL-1 are selectively controlled by p38 mitogen-activated protein kinase. Regulation of prostaglandin H synthase-2, metalloproteinases, and IL-6 at different levels. J Immunol 158, 3165–3173PubMedGoogle Scholar
  56. 56.
    Jorres, R. A. and Magnussen, H. (1997) Oxidative stress in COPD. Eur Respir Rev. 7, 131–135Google Scholar
  57. 57.
    Patrick, D. A. (1997) Role of p38 MAP kinase in human neutrophil priming for superoxide production and elastase release. Surg Forum 48, 48–50Google Scholar
  58. 58.
    Badger, A. M., Bradbeer, J. N., Votta, B., Lee, J. C., Adams, J. L., and Griswold, D. E. (1996) Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J Pharmacol Exp Ther 279, 1453–1461PubMedGoogle Scholar
  59. 59.
    Carter, A. B., Monick, M. M., and Hunninghake, G. W. (1999) Both Erk and p38 kinases are necessary for cytokine gene transcription. Am J Respir Cell Mol Biol 20, 751–758PubMedGoogle Scholar
  60. 60.
    Nick, J. A., Young, S. K., Brown, K. K., Avdi N. J., Arndt, P. G., Suratt, B. T., Janes, M. S., Henson, P. M., and Worthen, G. S. (2000) Role of p38 mitogen-activated protein kinase in a murine model of pulmonary inflammation. J Immunol 164, 2151–2159PubMedGoogle Scholar
  61. 61.
    Underwood, D.C., Osborn, R. R., Kotzer, C. J., Adam, J. L., Lee, J. C., Webb, E. F., Carpenter, D. C., Bochnowicz, S., Thomas, H. C., Hay, D. W., and Griswold, D. E. (2000) SB 239063, a potent p38 MAP kinase inhibitor, reduces inflammatory cytokine production, airways eosinophil infiltration, and persistence. J Pharmacol Exp Ther 293, 218–288Google Scholar
  62. 62.
    Jackson, J. R., Bolognese, B., Hillegass, L., Kassis, S., Adams, J., Griswold, D. E., and Winkler, J. D. (1998) Pharmacological effects of SB 220025, a selective inhibitor of p38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models. J Pharmacol Exp Ther 284:687–692, 1998Google Scholar
  63. 63.
    Niiro, H., Otsuka, T., Ogami, E., Yamaoka, K., Nagano, S., Akahoshi, M., Nakashima, H., Arinobu, Y., Izuhara, K., and Niho, Y. (1998) MAP kinase pathways as a route for regulatory mechanisms of IL-10 and IL-4 which inhibit COX-2 expression in human monocytes. Biochem Biophys Res Commun 250, 200–205PubMedCrossRefGoogle Scholar
  64. 64.
    Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A., Bar-Sagi, D., Jones, S. N., Flavell, R. A. and Davis, R. J. (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870–874PubMedCrossRefGoogle Scholar
  65. 65.
    Yujiri, T., Sather, S., Fanger, G. R., and Johnson, G. L. (1998) Role of MEKK-1 in cell survival and activation of JNK and ERK pathways defined by targeted gene disruption. Science 282, 1911–1914PubMedCrossRefGoogle Scholar
  66. 66.
    Baud, V., Liu, Z.-G., Bennett, B., Suzuki, N., Xia, Y., and Karin, M. (1999) Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Develop 13, 1297–1308PubMedCrossRefGoogle Scholar
  67. 67.
    Han, J., Huez, G., and Beutler, B. (1991) Interactive effects of the TNF promoter and 3′-untranslated regions. J Immunol 146, 1843–1848PubMedGoogle Scholar
  68. 68.
    Swantek, J. L., Cobb, M. H., and Geppert, T. D. (1997) Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-α) translation: Glucocorticoids inhibit TNF-α translation by blocking JNK/SAPK. Mol Cell Biol 17, 6274–6282PubMedGoogle Scholar
  69. 69.
    Shanley, T. P., Vasi, N., Deneberg, A., and Wong, H. R. (2001) The serine/threonine phosphatase, PP2A: Endogenous regulator of inflammatory cell signaling. J Immunol 166, 966–972PubMedGoogle Scholar
  70. 70.
    Hambleton, J., Weinstein, S. L., Lern, L., and DeFranco, A. L. (1996) Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci USA 93, 2774–2778PubMedCrossRefGoogle Scholar
  71. 71.
    Burack, W. R., and Shaw, A. S. (2000) Signal transduction: hanging of a scaffold. Curr Opin Cell Biol 12, 211–215PubMedCrossRefGoogle Scholar
  72. 72.
    Chen, W., Monick, M. M., Carter, A. B., and Hunninghake, G. W. (2000) Activation of ERK2 by respiratory syncytial virus in A549 cells is linked to the production of interleukin-8. Exp Lung Res 26, 13–26PubMedCrossRefGoogle Scholar
  73. 73.
    Procyk, K. J., Kovarik, P., von Gabain, A., and Baccarini, M. (1999) Salmonella typhimurium and lipopolysaccharide stimulate extracellularly regulated kinase activation in macrophages by a mechanism involving phosphatidylinositol 3-kinase and phospholipase D as novel intermediates. Infect Immun 67, 1011–1018PubMedGoogle Scholar
  74. 74.
    Meyer, C. F., Wang, X., Chang, C., Templeton, D., and Tan, T. H. (1996) Interaction between c-Rel and the mitogen-activated protein kinase kinase kinase-1 signaling cascade in mediating kappaB enhancer activation. J Biol Chem 271, 8971–8976PubMedCrossRefGoogle Scholar
  75. 75.
    Janssen-Heininger, Y. M., Macara, I., and Mossman, B. T. (1999) Cooperativity between oxidants and tumor necrosis factor in the activation of nuclear factor (NF)-kappaB: requirement of Ras/mitogen-activated protein kinases in the activation of NF-kappaB by oxidants. Am J Respir Cell Mol Biol 20, 942–952PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Thomas P. Shanley
    • 1
  • Hector R. Wong
    • 1
  1. 1.Division of Critical Care MedicineChildren’s Hospital Medical Center and Children’s Hospital Research FoundationCincinnatiUSA

Personalised recommendations