The Adaptations of Branisella boliviana, the Earliest South American Monkey

  • Richard F. Kay
  • Blythe A. Williams
  • Federico Anaya
Part of the Advances in Primatology book series (AIPR)


One of the goals of paleoprimatology is to provide adaptive explanations for the origins of evolutionary novelties of the order and its major groups. For such scenarios to be more than,“just-so stories,” like Kipling’s story of how the leopard got its spots, we need to develop and test ideas about the adaptive significance of particular morphological character states that are likely to be preserved in the fossil record. Once the adaptive context of the morphology is fully appreciated, we can go on to make inferences about the behavior of extinct primate species that possessed similar character states. But even when we know with some confidence the adaptive “meaning” of a particular morphological character state and use it to infer the behavior of an extinct species, we must be able to place that extinct species into its phylogenetic context. What is the distribution of the newly identified morphological peculiarity? Is it found in just one extinct species or does it characterize some larger group of species? And what does the distribution of the character state tell us about the ancestral morphological (and inferred behavioral) pattern of primate clades? Therefore, in parallel with the effort to understand adaptation of character states, there must be an effort to reconstruct the phylogenetic pattern of primates.


Character State World Monkey Tooth Wear Cheek Tooth Crown Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthony, M. R. L., and Kay, R. F. 1993. Tooth form and diet in ateline and alouattine primates: reflections on the comparative method. Am. J. Sci. 283A: 356–382.CrossRefGoogle Scholar
  2. Aslan, A. 1994. Holocene Sedimentation, Soil Formation, and Floodplain Evolution of the Mississippi River Floodplain, Ferriday, Louisiana. Ph.D. thesis. University of Colorado, Boulder, Colorado.Google Scholar
  3. Barroso, C. M. L., Schneider, H., Schneider, M. P. C., Sampaio, I., Harada, H. L., Czelusniak, J., and Goodman, M. 1997. Update on the phylogenetic systematics of New World monkeys: Further DNA evidence for placing pygmy marmoset (Cebuella) within the genus Callithrix. Int. J. Primatol. 18: 651–674.CrossRefGoogle Scholar
  4. Benjamin, M. T., Johnson, N. M., and Naeser, C. W. 1987. Recent rapid uplift in the Bolivian Andes: evidence from fission-track dating. Geology 15: 680–683.CrossRefGoogle Scholar
  5. Bock, W. J., and von Wahlert, G. 1965. Adaptation and the form-function complex. Evolution 19: 269–299.CrossRefGoogle Scholar
  6. Brandon, R. 1987. Adaptation. Princeton University Press, Princeton, NJ.Google Scholar
  7. Clark, W. E. Le Gros 1971. The Antecedents of Man, Third Edition. Edinburgh University Press, Edinburgh.Google Scholar
  8. Clutton-Brock, T. H. and Harvey, P. H. 1979. Comparison and adaptation. Proc. R. Soc. London, Ser. B 205: 547–565.CrossRefGoogle Scholar
  9. Coddington, J. A. 1988. Cladistic tests of adaptational hypotheses. Cladistics 4:3–22. Coimbra-Filho, A. F., and Mittermeier, R. A. 1976. Exudate eating and tree gouging in marmosets. Nature 262: 630.Google Scholar
  10. Darwin, C. 1859. The Origin of Species, Sixth Edition (1872). Reprinted by D. Appleton and Company, London.Google Scholar
  11. Delson, E. 1980. Fossil macaques, phyletic relationships and a scenario of deployment. In: D. G. Lindburg (eds.), The Macaques: Studies in Ecology, pp. 10–30. Van Nostrand, New York.Google Scholar
  12. Delson, E. 1988. Cercopithecidae. In: I. Tattersall, E. Delson, and J. Van Couvering (eds.), Encyclopedia of Human Evolution and Prehistory. pp. 119–121. Garland, New York.Google Scholar
  13. Delson, E. 1994. Evolutionary history of the colobine monkeys in paleoenvironmental perspective. In: A. G. Davies and J. F. Oates (eds.), Colobine Monkeys, pp. 11–43. Cambridge University Press, New York.Google Scholar
  14. Disotell, T. R. 1996. The phylogeny of Old World monkeys. Evol. Anthropol. 5: 18–24.CrossRefGoogle Scholar
  15. Eaglen, R. H. 1984. Incisor size and diet revisited: the view from a platyrrhine perspective. Am. J. Phys. Anthropol. 64: 263–275.CrossRefGoogle Scholar
  16. Eisenberg, J. F., O’Connell, M. A., and August, P. V. 1979. Density, productivity, and distribution of mammals in two Venezuelan habitats. In: J. F. Eisenberg (ed.), Vertebrate Ecology in the Northern Neotropics. pp. 187–207. Smithsonian Institution Press, Washington, D.C.Google Scholar
  17. Farrell, K. M. 1987. Sedimentology and facies architecture of overbank deposits of the Mississippi River, False River region, Louisiana. In: F. G. Ethridge, R. M. Flores, and M. D. Harvey (eds.), Fluvial Sedimentology, pp. 1111–129.Google Scholar
  18. Soc. Econ. Paleontol. Mineral. Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125: 1–15.CrossRefGoogle Scholar
  19. Fleagle, J. G., Kay, R. F., and Anthony, M. R. L. 1997. Fossil New World monkeys. In: R. F. Kay,R. H. Madden, R. L. Cifelli, and J. J. Flynn (eds.), Vertebrate Paleontology in the Neotropics. pp. 473–495. Smithsonian Institution Press, Washington, D.C.Google Scholar
  20. Ford, S. M. 1986 Systematics of the New World monkeys. In: D. R. Swindler and J. Erwin (eds.), Comparative Primate Biology, I, Systematics, Evolution, and Anatomy, pp. 73–135. Alan R. Liss, New York.Google Scholar
  21. Ford, S. M. 1988. Postcranial adaptations of the earliest platyrrhine. J. Hum. Evol. 17: 5–192.CrossRefGoogle Scholar
  22. Ganzhorn,J., Malcomber, S., Andrianantoanina, O., and Goodman, S. M. 1997. Habitat characteristics and lemur species richness in Madagascar. Biotropica 29: 331–343.CrossRefGoogle Scholar
  23. Gould, S. J., and Vrba, E. S. 1982. Exaptation-a missing term in the science of form. Paleobiology 8: 4–15.Google Scholar
  24. Gregory, W. K. 1922. The Origin and Evolution of the Human Dentition. Williams and Wilkins, New York.Google Scholar
  25. Hershkovitz, P. 1977. New World Monkeys (Platyrrhini), Vol. I. University of Chicago Press, Chicago. Hitz, R. B. 1997. Contributions to South American Mammalian Paleontology: New Interatheres (Notoun-gulata) from Chile and Bolivia, Typothere (Notoungulata) Phylogeny, and Paleosols from the Late Oligocene Salla Beds. Ph.D. dissertation. University of California, Santa Barbara.Google Scholar
  26. Hoffstetter, R. 1969. Un primate de l’Oligocène inferieur Sud-Americain: Branisella boliviana sp. nov. C. R. Acad. Sci., Paris 269: 434–437.Google Scholar
  27. Hoffstetter, R. 1980. Los monos platirrinos (Primates): origin, extension, filogenia, taxonomia. Actas II Congreso Argentino de Paleontologia y Bioestratigrafia y I Congreso Latinoamericano de Paleontologia, Buenos Aires, 1978.Google Scholar
  28. Hylander, W. L. 1975. Incisor size and diet in anthropoids with special reference to Cercopithecidae. Science 189: 1095–1098.CrossRefGoogle Scholar
  29. Jacobs, G. H., Deegan, J. F. I., Neitz, J., Crognale, M. A., and Neitz, M. 1993. Photopigments and color vision in the nocturnal monkey, Aotus. Vision Res. 33: 1773–1783.CrossRefGoogle Scholar
  30. Janis, C. M. 1988. An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. Mém. Mus. Nat. Hist. Nat. Paris (Sér. C) 53: 367–387.Google Scholar
  31. Janis, C. M., and Fortelius, M. 1988. On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biol. Rev. 63: 197–230.CrossRefGoogle Scholar
  32. Kay, R. F. 1975. The functional adaptations of primate molar teeth. Am. J. Phys. Anthropol. 43: 195–216.CrossRefGoogle Scholar
  33. Kay, R. F. 1977. The evolution of molar occlusion in Cercopithecidae and early catarrhines. Am. J. Phys. Anthropol. 46: 327–352.CrossRefGoogle Scholar
  34. Kay, R. F. 1981. The Nut-crackers: a new theory of the adaptations of the Ramapithecines. Am. J. Phys. Anthropol. 55: 141–151.CrossRefGoogle Scholar
  35. Kay, R. F. 1990. The phyletic relationships of extant and fossil Pitheciinae (Platyrrhini, Anthropoidea). J. Hum. Evol. 19: 175–208.CrossRefGoogle Scholar
  36. Kay, R. F., and Cartmill, M. 1977. Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea, ?Primates), with a description of a new genus and species. J. Hum. Evol. 6:: 19–53.CrossRefGoogle Scholar
  37. Kay, R. F., and Covert, H. 1984. Anatomy and the behavior of extinct primates. In: D. Chivers, B. A. Wood, and A. Bilsborough (eds.), Food Acquisition and Processing in Primates. pp. 467–508. Plenum Press, New York.Google Scholar
  38. Kay, R. F., and Hylander, W. L. 1978. The dental structure of mammalian folivores with special reference to primates and Phalangeroidea (Marsupialia). In: G. G. Montgomery (ed.), The Ecology of Arboreal Folivores. pp. 173–191. Smithsonian Institution Press, Washington, D.C.Google Scholar
  39. Kay, R. F., and Sheine, W. S. 1979. On the relationship between chitin particle size and digestibility in the primate Galago senegalensis. Am. J. Phys. Anthropol. 50: 301–308.CrossRefGoogle Scholar
  40. Kay, R. F., and Ungar, P. 1997. Dental evidence for diet in some Miocene catarrhines with comments on the effects of phylogeny on the interpretation of adaptation. In: D. R. Begun, C. Ward, and M. Rose (eds.), Function, Phylogeny and Fossils: Miocene Hominoids and Great Ape and Human Origins, pp. 131–151. Plenum Press, New York.Google Scholar
  41. Kay, R. F., and Williams, B. A. 1995. Recent finds of monkeys of monkeys from the Oligocene/ Miocene of Salla, Bolivia. Am. J. Phys. Anthropol. Suppl. 20: 124.Google Scholar
  42. Kay, R. F., Madden, R. H. Van Schaik, C., and Higdon, D. 1997. Primate species richness is determined by plant productivity: implications for conservation. Proc. Natl. Acad. Sci. USA. 94: 13023–13027.CrossRefGoogle Scholar
  43. Kay, R. F., MacFadden, B. J.,Madden,R. H.,Sandeman,H.and Anaya, F. 1998a. Revised age of the Salla beds, Bolivia, and its bearing on the age of the Deseadan South American Land Mammal ‘Age’. J. Vert. Paleontol. 18: 189–199.CrossRefGoogle Scholar
  44. Kay, R. F., Johnson, D. J., and Meldrum, D. J. 1998b. A new pitheciin primate from the middle Miocene of Argentina. Am. J. Primatol. 45: 317–336.CrossRefGoogle Scholar
  45. Kinzey, W. G., and Norconk, M. A. 1990. Hardness as a basis of fruit choice in two sympatric primates. Am. J. Phys. Anthropol. 81: 5–15.CrossRefGoogle Scholar
  46. Kraus, M., and Asian, A. 1993. Eocene hydromorphic paleosols: significance for interpreting ancient floodplain processes./ Sediment. Petrol. 63: 453–463.Google Scholar
  47. MacFadden, B. J. 1990. Chronology of Cenozoic primate localities in South America.]. Hum. Evol. 19: 7–22.CrossRefGoogle Scholar
  48. Martin, L. C., Kinzey, W. G., and Maas, M. C. 1994. Enamel thickness in pitheciine primates. Am. J. Phys. Anthropol. Suppl. 18: 138.Google Scholar
  49. Martin, R. D. 1990. Primate Origins and Evolution: A Phylogenetic Reconstruction. Chapman and Hall, London.Google Scholar
  50. Meldrum, D. J., and Kay, R. F. 1997. Nuciruptor rubricae, a new pitheciin seed predator from the Miocene of Colombia. Am. J. Phys. Anthropol. 102: 407–427.CrossRefGoogle Scholar
  51. Pagel, M. 1993. Seeking the evolutionary regression coefficient: an analysis of what comparative methods measure.]. Theor. Biol. 164: 191–205.CrossRefGoogle Scholar
  52. Paley, W. 1854. Natural Theology. American Tract Society, New York.Google Scholar
  53. Purvis, A., and Rambaut, A. 1995. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput. App. Biosci. 11: 247–251.Google Scholar
  54. Reed, K., and Fleagle, J. G. 1995. Geographic and climatic control of primate diversity? Proc. Natl. Acad. USA 92: 7874–7876.CrossRefGoogle Scholar
  55. Reeve, H. K., and Sherman, P. W. 1993. Adaptation and the goals of evolutionary research. Quart. Rev. Biol. 68: 1–32.CrossRefGoogle Scholar
  56. Rosenberger, A. L. 1978. Loss of incisor enamel in marmosets. J. Mammal. 59: 207–208.CrossRefGoogle Scholar
  57. Rosenberger, A. L. 1979. Phylogeny, Evolution and Classification of New World Monkeys (Platyrrhini, Primates). Ph.D. Dissertation. City University of New York.Google Scholar
  58. Rosenberger, A. L. 1981a. A mandible of Branisella boliviana (Platyrrhini, Primates) from the Oligocene of South America. Int. J. Primatol. 2: 1–17.CrossRefGoogle Scholar
  59. Rosenberger, A. L. 1981b. Systematics: The higher taxa. In: A. F. Coimbra-Filhoo and R. A. Mittermeier (eds.), Ecology and Behavior of Neotropical Primates, Vol. 1, pp. 9–27. Academia Brasileira de Ciências, Rio de Janeiro.Google Scholar
  60. Rosenberger, A. L. 1992. The evolution of feeding niches in New World monkeys. Am. J. Phys. Anthropol. 88: 525–562.CrossRefGoogle Scholar
  61. Rosenberger, A. L., and Kinzey, W. G. 1976. Functional patterns of molar occlusion in platyrrhine primates. Am. J. Phys. Anthropol. 45: 261–298.CrossRefGoogle Scholar
  62. Rosenberger, A. L., Setoguchi, T., and Shigehara, N. 1990. The fossil record of callitrichine primates. J. Hum. Evol. 19: 209–236.CrossRefGoogle Scholar
  63. Rosenberger, A. L. Hartwig, W. C., and Wolff, R. C. 1991. Szalatavus attricuspis, an early platyrrhine primate. Folia Primatol. 56: 225–233.CrossRefGoogle Scholar
  64. Rowe, N. 1996. The Pictorial Guide to the Living Primates. Pogonias Press, East Hampton, NY. Shnchez-Villagra, M., and Kay, R. F. 1997. A skull of Proargyrolagus, the oldest argyrolagid (late Oligocene Salla Beds, Bolivia), with brief comments concerning its paleobiology. J. Vert Paleontol. 17: 717–724.Google Scholar
  65. Sarich, V. M., and Cronin, J. E. 1976. Molecular systematics of the primates. In: M. Goodman and R. E. Tashian (eds.), Molecular Anthropology, pp. 139–157. Plenum Press, New York.Google Scholar
  66. Schneider, H., Schneidder, M. P. C., Sampiao, I., Harada, M. L., Stanhope, M.Czelusniak, J. and Goodman, M. 1993. Molecular phylogeny of the New World monkeys (Platyrrhini, Primates). Mol. Phylog. Evol. 2: 225–242.CrossRefGoogle Scholar
  67. Sheine, W. S., and Kay, R. F. 1977. An analysis of chewed food particle size and its relationship to molar structure in the primates Cheirogaleus medius and Galago senegalensis, and the insectivoran Tupaia glis. Am. J. Phys. Anthropol. 47: 15–20.CrossRefGoogle Scholar
  68. Sheine, W. S., and Kay, R. F. 1982. A model for comparison of masticatory effectiveness in primates.]. Morphol. 172: 139–149.CrossRefGoogle Scholar
  69. Shockey, B. J. 1997. Two new notoungulates (Notohippidae) from the Salla beds of Bolivia (Deseadan, late Oligocene): systematics and functional morphology.]. Vert. Paleontol. 17: 584–599.CrossRefGoogle Scholar
  70. Simpson, G. G. 1933. The “Plagiiaulacoid” type of mammalian dentition. J. Mammal. 14: 97–107.CrossRefGoogle Scholar
  71. Smith, R. J. 1994. Degrees of freedom in Interspecific allometry: an adjustment for the effects of phylogenetic constraint. Am. J. Phys. Anthropol. 93: 95–107.CrossRefGoogle Scholar
  72. Strait, S. G. 1991. Dietary Reconstruction in Small-Bodied Fossil Primates. Ph. D. dissertation. State University of New York, Stony Brook.Google Scholar
  73. Szalay, F. S. 1981. Phylogeny and the problem of adaptive significance: the case of the earliest primates. Folia Primatol. 36: 157–182.CrossRefGoogle Scholar
  74. Szalay, F. S., and Delson, E. 1979. Evolutionary History of the Primates. Academic Press, London.Google Scholar
  75. Takai, M., and Anaya, F. 1996. New specimens of the oldest fossil platyrrhine, Branisella boliviana from Salla, Bolivia. Am. J. Phys. Anthropol. 99: 301–318.CrossRefGoogle Scholar
  76. Tarling, D. H. 1980. The geologic evolution of South America with special reference to the last 200 million years. In: R. L. Ciochon and B. Chiarelli (eds.), Evolutionary Biology of the New World Monkeys and Continental Drift, pp. 1–42. Plenum Press, New York.Google Scholar
  77. Ungar, P. 1994. Patterns of ingestive behavior and anterior tooth use differences in sympatric anthropoid primates. Am. J. Phys. Anthropol. 94: 339–363.CrossRefGoogle Scholar
  78. Ungar, P. 1998. Dental allometry, morphology, and wear as evidence for diet in fossil primates. Evol. Anthropol. 6: 205–217.CrossRefGoogle Scholar
  79. Van Roosmalen, G. M.,Mittermeier, R. A., and Milton, K. 1981. The bearded sakis, genus Chiropotes. In: A. F. Ciombra-Filho and R. A. Mittermeier (eds.), Ecology and Behavior of Neotropical Primates, Vol. 1, pp. 419–442.Google Scholar
  80. Academia Brasileira de Ciências, Rio de Janeiro. Williams, B A, and Kay, R. F. 1995. The taxon Anthropoidea and the crown clade concept. Evol. Anthropol. 3: 188–190.CrossRefGoogle Scholar
  81. Williams, G. C. 1966. Adaptation and Natural Selection. Princeton University Press, Princeton, NJ.Google Scholar
  82. Wolff, F. G. 1984. New specimens of the primate Branisella boliviana from the early Oligocene of Salla, Bolivia./ Vert. Paleontol. 4:570–574.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Richard F. Kay
    • 1
  • Blythe A. Williams
    • 1
  • Federico Anaya
    • 2
  1. 1.Department of Biological Anthropology and AnatomyDuke University Medical CenterDurhamUSA
  2. 2.Museo Nacional de Historia NaturaleLa PazBolivia

Personalised recommendations