Advertisement

Exploiting DNA Immunization to Generate Polyclonal Antisera to Coronavirus Replicase Proteins

  • Susan C. Baker
  • Amornrat Kanjanahaluethai
  • Nathan M. Sherer
  • David D. Axtell
  • Jennifer J. Schiller
Chapter
  • 50 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 494)

Abstract

Over the last 10 years, a large number of studies have shown that immunization with plasmid DNA encoding an antigen can elicit specific immune responses in animals (reviewed in Donnelly et al 1997; Robinson and Torres 1997). The type of immune response generated depends on several factors, such as the route of inoculation, whether the DNA-encoded antigen remains intracellular or is secreted, and the stability and antigenicity of the protein products. DNA immunization is an attractive alternative to traditional purified protein immunizations because plasmid DNA is relatively easy and inexpensive to generate. However, additional studies are required to determine the optimal route of delivery of plasmid DNA and if additional factors may help “direct” the encoded antigen to elicit a specific type of immune response.

Keywords

Polyclonal Antiserum Mouse Hepatitis Virus Specific Antibody Response Murine Coronavirus Strong Humoral Immune Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akbari, O., Panjwani, N., Garda, S., Tascon, R., Lowrie, D., and Stockinger, B. 1999. DNA vaccination: Transfection and activation of dendritic cells as key events for immunity. J. Exp. Med. 189:169–177.PubMedCrossRefGoogle Scholar
  2. Bonilla, P. J., Gorbalenya, A. E., and Weiss, S. R. 1994. Mouse hepatitis virus strain A59 RNA Polymerase gene ORF la: Heterogeneity among MHV strains. Virology 198:736–740.PubMedCrossRefGoogle Scholar
  3. Boyle, J. S., Brady, J. L., and Lew, A. M. 1998. Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature 392:408–411.PubMedCrossRefGoogle Scholar
  4. Boyle, J. S., Silva, A., Brady, J. L., and Lew, A. M. 1997. DNA immunization: Induction of higher avidity antibody and effect of route on T cell cytotoxicity. Proc. Natl. Acad. Sci. USA 94:14626–14631.PubMedCrossRefGoogle Scholar
  5. Donnelly, J. J., Ulmer, J. B., Shiver, J. W., and Liu, M. A. 1997. DNA vaccines. Annu. Rev. Immunol. 15:617–648.PubMedCrossRefGoogle Scholar
  6. Isono, T., and Seto, A. 1995. Cloning and sequencing of the rabbit gene encoding T-cell costimulatory molecules. Immunogenetics 42:217–220.PubMedCrossRefGoogle Scholar
  7. Kanjanahaluethai, A., and Baker, S. C. 2000. Identification of activity of mouse hepatitis virus papain-like proteinase 2. J. Virol, (in press)Google Scholar
  8. Lee, H.-J., Shieh, C.-K., Gorbalenya, A. E., Koonin, E. V., Monica, N. L., Tuler, J., Bagdzhadzhyan, A., and Lai, M. M. C. 1991. The complete sequence (22 kilobases) of murine Coronavirus gene 1 encoding the putative proteases and RNA Polymerase. Virology 180:567–582.PubMedCrossRefGoogle Scholar
  9. Letvin, N. L., Montefiori, D. C., Yasutomi, Y., Perry, H. C., Davies, M. E., Lekutis, C., Alroy, M., Freed, D. C., Lord, C. I., Handt, L. K., Liu, M. A., and Shiver, J. W. 1997. Potent, protective anti-HIV immune responses generated by bimodal HIV envelope DNA plus protein vaccination. Proc. Natl. Acad. Sci. USA 94:9378–9383.PubMedCrossRefGoogle Scholar
  10. Linsley, P. S., Brady, W., Urnes, M., Grosmaire, L. S., Damle, N. K., and Ledbetter, J. A. 1991. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174:561–569.PubMedCrossRefGoogle Scholar
  11. Richmond, J. F. L., Lu, S., Santoro, J. C., Weng, J., Hu, S. L., Montefiori, D. C., and Robinson, H. L. 1998. Studies of the neutralizing activity and avidity of anti-human immunodeficiency virus type 1 env antibody elicited by DNA priming and protein boosting. J. Virol. 72:9092–9100.PubMedGoogle Scholar
  12. Robinson, H. L., and Torres, C.A T. 1997. DNA vaccines. Semin. Immunol. 9:271–283.PubMedCrossRefGoogle Scholar
  13. Schiller, J. J., Kanjanahaluethai, A., and Baker, S. C. 1998. Processing of the Coronavirus MHV-JHM polymerase polyprotein: Identification of precursors and proteolytic products spanning 400 kilodaltons of ORFla. Virology 242:288–302.PubMedCrossRefGoogle Scholar
  14. Sundaram, P., Xiao, W., and Brandsma, J. L. 1996. Particle-mediated delivery of recombinant expression vectors to rabbit skin induces high-titered polyclonal antisera (and circumvents purification of a protein immunogen). Nucl. Acids Res. 24:1375–1377.PubMedCrossRefGoogle Scholar
  15. Takashima, A., and Morita, A. 1999. Dendritic cells in genetic immunization. J. Leukoc. Biol. 66:350–356.PubMedGoogle Scholar
  16. Torres, C. A. T., Iwasaki, A., Barber, B. H., and Robinson, H. L. 1997. Differential dependence on target site tissue for gene gun and intramuscular DNA immunizations. J. Immunol. 158:4529–4532.PubMedGoogle Scholar
  17. Wells, D. J. 1993. Improved gene transfer by direct plasmid injection associated with regeneration in mouse skeletal muscle. FEBS 332:179–182.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Susan C. Baker
    • 1
  • Amornrat Kanjanahaluethai
    • 1
  • Nathan M. Sherer
    • 1
  • David D. Axtell
    • 1
  • Jennifer J. Schiller
    • 1
  1. 1.Department of Microbiology and ImmunologyLoyola University of Chicago, Stritch School of MedicineMaywoodUSA

Personalised recommendations