Advertisement

Arterivirus RNA Synthesis Dissected

Nucleotides, membranes, amino acids, and a bit of zinc…
  • Eric J. Snijder
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 494)

Abstract

Over the past ten years, research on by far the largest nidovirus protein, the nonstructural gene 1 or replicase gene, has gone through a number of characteristic stages. First, cDNA copies of various nidovirus replicase genes were cloned and sequenced, with those of the coronaviruses infectious bronchitis virus (IBV) (Boursnell et al 1987) and mouse hepatitis virus (MHV) (Lee et al 1991) and the arterivirus equine arteritis virus (EAV) (den Boon et al 1991) being the first to be completed. Subsequently, extensive sequence comparisons revealed very interesting similarities/homologies within the nidovirus group (then still classified as corona-, toro-, and arteriviruses) and between nidoviruses and other positive-stranded RNA viruses. About five years later, the taxonomic debate on the position of the various nidovirus subgroups ended at the 1996 International Congress of Virology in Jerusalem. The family Arteriviridae and the order Nidovirales (containing the Coronaviridae and Arteriviridae) were formally established to acknowledge both the unique properties of arteriviruses and coronaviruses as well as their intriguing ancestral relationship at the level of replicase genes, genome organization, and replication strategy (Snijder and Spaan 1995, de Vries et al 1997).

Keywords

Infectious Bronchitis Virus Genome Replication Replication Complex Minus Strand Mouse Hepatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Almazan, F., Gonzalez, J. M., Penzes, Z., Izeta, A., Calvo, E., Plana-Duran, J., and Enjuanes, L., 2000, Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc. Natl. Acad. Sci. U. S. A. 97:5516–5521.PubMedCrossRefGoogle Scholar
  2. Bost, A. G., Carnahan, R. H., Lu, X. T., and Denison, M. R., 2000, Four proteins processed from the replicase gene polyprotein of mouse hepatitis virus colocalize in the cell periphery and adjacent to sites of virion assembly. J. Virol. 74:3379–3387.PubMedCrossRefGoogle Scholar
  3. Boursnell, M. E., Brown, T. D. K., Foulds, I. J., Green, P. F., Tomley, F. M., and Binns, M. M., 1987, Completion of the sequence of the genome of the Coronavirus avian infectious bronchitis virus. J. Gen. Virol. 68:57–77.PubMedCrossRefGoogle Scholar
  4. Brian, D. A. and Spaan, W. J. M., 1997, Recombination and Coronavirus defective interfering RNAs. Semin. Virol. 8:101–111.CrossRefGoogle Scholar
  5. den Boon, J. A., Snijder, E. J., Chirnside, E. D., de Vries, A. A. F., Horzinek, M. C., and Spaan, W. J. M., 1991, Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J. Virol. 65:2910–2920.Google Scholar
  6. de Vries, A. A. F., Horzinek, M. C., Rottier, P. J. M., and de Groot, R. J., 1997, The genome organization of the Nidovirales: similarities and differences between arteri-, toro-, and coronaviruses. Semin. Virol. 8:33–47.CrossRefGoogle Scholar
  7. Dougherty, W. G. and Semler, B. L., 1993, Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol. Rev. 57:781–822.PubMedGoogle Scholar
  8. Gorbalenya, A. E. and Snijder, E. J., 1996, Viral cysteine proteases. Persp. Drug Discov. Design 6:64–86.CrossRefGoogle Scholar
  9. Lee, H. J., Shieh, C. K., Gorbalenya, A. E., Koonin, E. V., La Monica, N., Tuler, J., Bagdzhadzhyan, A., and Lai, M. M. C., 1991, The complete sequence (22 kilobases) of murine Coronavirus gene 1 encoding the putative proteases and RNA Polymerase. Virology 180:567–582.PubMedCrossRefGoogle Scholar
  10. Meulenberg, J. J. M., Bos-de Ruijter, J. N. A., Wensvoort, G., and Moormann, R. J. M., 1998, Infectious transcripts from cloned genome-length cDNA of porcine reproductive respiratory syndrome virus. J. Virol. 72:380–387.PubMedGoogle Scholar
  11. Molenkamp, R., van Tol, H., Rozier, B. C. D., van der Meer, Y., Spaan, W. J. M., and Snijder, E. J., 2000, The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. J. Gen. Virol. 81:2491–2496.PubMedGoogle Scholar
  12. Nagy, P. D. and Simon, A. E., 1997, New insights into the mechanisms of RNA recombination. Virology 235:1–9.PubMedCrossRefGoogle Scholar
  13. Pasternak, A. O., Gultyaev, A. P., Spaan, W. J. M., and Snijder, E. J., 2000, Genetic manipulation of arterivirus alternative mRNA leader-body junction sites reveals tight regulation of structural protein expression. J. Virol. 74, in press.Google Scholar
  14. Pedersen, K. W., van der Meer, Y., Roos, N., and Snijder, E. J., 1999, Open reading frame la-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J. Virol. 73:2016–2026.PubMedGoogle Scholar
  15. Sawicki, S. G. and Sawicki, D. L., 1995, Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv. Exp. Biol. Med. 380:499–506.CrossRefGoogle Scholar
  16. Seybert, A., van Dinten, L. C., Snijder, E. J., and Ziebuhr, J., 2000, The biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and Coronavirus helicases. J. Virol. 74:9586–9593.PubMedCrossRefGoogle Scholar
  17. Shi, S. T., Schiller, J. J., Kanjanahaluethai, A., Baker, S. C., Oh, J. W., and Lai, M. M., 1999, Colocalization and membrane association of murine hepatitis virus gene 1 products and De novo-synthesized viral RNA in infected cells. J. Virol. 73:5957–5969.PubMedGoogle Scholar
  18. Sims, A. C., Ostermann, J., and Denison, M. R., 2000, Mouse hepatitis virus replicase proteins associate with two distinct populations of intracellular membranes. J. Virol. 74:5647–5654.PubMedCrossRefGoogle Scholar
  19. Snijder, E. J., and Spaan, W. J. M., 1995, The coronaviruslike superfamily. In: The Coronaviridae (S. G. Siddell, ed), Plenum Press, New York, N. Y., pp. 239–255.Google Scholar
  20. Snijder, E. J., Wassenaar, A. L. M., and Spaan, W. J. M., 1994, Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. J. Virol. 68:5755–5764.PubMedGoogle Scholar
  21. van der Meer, Y., Snijder, E. J., Dobbe, J. C., Schleich, S., Denison, M. R., Spaan, W. J. M., and Krijnse Locker, J., 1999, Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J. Virol. 73:7641–7657.PubMedGoogle Scholar
  22. van der Meer, Y., van Toi, H., Krijnse Locker, J., and Snijder, E. J., 1998, ORFla-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. J. Virol. 72:6689–6698.PubMedGoogle Scholar
  23. van Dinten, L. C., den Boon, J. A., Wassenaar, A. L. M., Spaan, W. J. M., and Snijder, E. J., 1997, An infectious arterivirus cDNA clone: identification of a replicase point mutation which abolishes discontinuous mRNA transcription. Proa Natl. Acad. Sci. U. S. A. 94:991–996.CrossRefGoogle Scholar
  24. van Dinten, L. C., Rensen, S., Spaan, W. J. M., Gorbalenya, A. E., and Snijder, E. J., 1999, Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and is essential for virus replication. J. Virol. 73:2027–2037.PubMedGoogle Scholar
  25. van Dinten, L. C., van Tol, H., Gorbalenya, A. E., and Snijder, E. J., 2000, The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. J. Virol. 74:5213–5223.PubMedCrossRefGoogle Scholar
  26. van Marie, G., Dobbe, J. C., Gultyaev, A. P., Luytjes, W., Spaan, W. J. M., and Snijder, E. J., 1999a, Arterivirus discontinuous mRNA transcription is guided by base-pairing between sense and antisense transcription-regulating sequences. Proc. Natl. Acad. Sci. U. S. A. 96:12056–12061.CrossRefGoogle Scholar
  27. van Marie, G., van Dinten, L. C., Luytjes, W., Spaan, W. J. M., and Snijder, E. J., 1999b, Characterization of an equine arteritis virus replicase mutant defective in subgenomic mRNA synthesis. J. Virol. 73:5274–5281.Google Scholar
  28. Wassenaar, A. L. M., Spaan, W. J. M., Gorbalenya, A. E., and Snijder, E. J., 1997, Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: evidence that NSP2 acts as a cofactor for the NSP4 serine protease. J. Virol. 71:9313–9322.PubMedGoogle Scholar
  29. Ziebuhr, J., Snijder, E. J., and Gorbalenya, A. E., 2000, Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol. 81:853–879.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Eric J. Snijder
    • 1
  1. 1.Department of Virology, Center of Infectious DiseasesLeiden University Medical CenterRC Leidenthe Netherlands

Personalised recommendations