Advertisement

Molecular Mechanisms Controlling Functional Voltage-Gated K+Channel Diversity and Expression in the Mammalian Heart

  • Jeanne M. Nerbonne

Abstract

Depolarization-activated, Ca2+-independent, outward K+ currents contribute to determining the magnitude and the duration of action potentials in cardiac cells. Several distinct types of voltage-gated K+ currents that serve these functions have been characterized (Anumonwo et al., 1991; Barry and Nerbonne, 1996). Important among these are the transient outward currents, I to,f and I to,s’ and several components of delayed rectification, including I Kr (I Kr(rapid)), I Ks (I K(slow)), and I Kur (I K(ultrarapid)), and others. There are interspecies differences in the expression of the various voltage-gated, cardiac K+ currents, as well as regional differences amongst myocytes from different regions of the heart within a single species. These distinct K+ current expression patterns contribute to the variability in action potential waveforms recorded in different regions of the heart (Antzelevitch et al., 1994; Barry and Nerbonne, 1996). Importantly, however, the time- and voltage-dependent properties of the various I t0 and I K currents in different cardiac cell types (and species) are quite similar, suggesting that the molecular identity of the K+ channels underlying these currents is predictable. A number of voltage-gated K+ channel (Kv) pore-forming (α) and accessory (β and minK) subunits are expressed in or have been cloned from the heart. A variety of experimental approaches have been exploited to define the relationships between these subunits and the functional voltage-gated K+ channels in cardiac cells. Considerable progress has been made in defining these relationships, and all of the results obtained to date (discussed in detail in subsequent sections) suggest that distinct molecular entities underlie the electrophysiologically distinct types of voltage-gated K+ currents/ Channels in myocardial cells.

Keywords

Potassium Channel Ventricular Myocytes Atrial Myocytes Mammalian Heart Transient Outward Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, A., Yamamoto, T., Isome, M., Ma, M. L., Yaoita, E., Kawasaki, K., Kihara, I., and Aizawa, Y., 1998, Thyroid hormone regulates expression of Shaker-related potassium channel mRNA in rat heart, Biochem. Biophys. Res. Commun. 245:226–230.PubMedCrossRefGoogle Scholar
  2. Abrahamsson, C., Palmer, M., Ljung, B., Duker, G., Bäärnheilm, C., Carlsson, L., and Danielsson, B., 1994, Induction of rhythm abnormalities in the fetal rat heart: A tentative mechanism for the embryotoxic effect of the class III antiarrhythmic agent almokalant, Cardiovasc. Res. 28:337–344.PubMedCrossRefGoogle Scholar
  3. Accili, E. A., Kiehn, J., Yang, Q., Wang, Z., Brown, A. M., and Wible, B. A., 1997a, Separable Kvβ subunit domains alter expression and gating of potassium channels, J. Biol. Chem. 272:25824–25831.PubMedCrossRefGoogle Scholar
  4. Accili, E. A., Kiehn, J., Wible, B. A., and Brown, A. M., 1997b, Interactions among inactivating and noninactivating Kvβ subunits, and Kvαl.2, produce potassium currents with intermediate inactivation, J. Biol. Chem. 272:28232–28236.PubMedCrossRefGoogle Scholar
  5. Antzelevitch, C., Sicouri, S., Lukas, A., Nesterenko, V. V., Liu, D.-W., and Didiego, J. M., 1994, Regional differences in the electrophysiology of ventricular cells: Physiological implications, in: Cardiac Electrophysiology: From Cell to Bedside (D. P. Zipes, and J. Jalife, eds.), W. B. Saunders Co., Philadelphia, pp. 228–245.Google Scholar
  6. Anumonwo, J. M. B., Freeman, L. C., Kwok, W. M., and Kass, R. S., 1991, Potassium channels in the heart: Electrophysiology and pharmacological regulation, Cardiovasc. Drug Rev. 9:299–316.CrossRefGoogle Scholar
  7. Anumonwo, J. M. B., Freeman, L. C, Kwok, W. M., and Kass, R. S., 1992, Delayed rectification in single cells isolated from guinea pig sinoatrial node, Am. J. Physiol. 262:H921–H925.PubMedGoogle Scholar
  8. Apkon, M., and Nerbonne, J. M., 1988, α1Adrenergic agonists selectively suppress voltage-dependent K+ currents in rat ventricular myocytes, Proc. Natl. Acad. Sci., U.S.A. 85:8756–8760.PubMedCrossRefGoogle Scholar
  9. Apkon, M., and Nerbonne, J. M., 1991, Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes, J. Gen. Physiol. 97:973–101.PubMedCrossRefGoogle Scholar
  10. Backx, P. H., and Marban, E., 1993, Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes, Circ. Res. 72:890–900.PubMedCrossRefGoogle Scholar
  11. Bailly, P., Bénitah, J. P., Mouchoniere, M., Vassort, G., and Lorente, P., 1997, Regional alteration of the transient outward current in human left ventricular septum during compensated hypertrophy, Circulation 96:1266–1274.PubMedCrossRefGoogle Scholar
  12. Baldwin, T. J., Tsaur, M. -L., Lopez, G. A., Jan, Y. N., and Jan, L. Y., 1991, Characterization of a mammalian cDNA for an inactivating voltage-sensitive K+ channel, Neuron 7:471–483.PubMedCrossRefGoogle Scholar
  13. Balser, J. R., Bennett, P. B., and Roden, D. M., 1990, Time-dependent outward currents in guinea pig ventricular myocytes: Gating kinetics of the delayed rectifier, J. Gen. Physiol. 96:835–863.PubMedCrossRefGoogle Scholar
  14. Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M., and Romey, G., 1996, KVLQT1 and ISK (minK) proteins associate to form the I Ks cardiac potassium current, Nature 384:78–80.PubMedCrossRefGoogle Scholar
  15. Barros, F., Gomezvarela, D., Viloria, C. G., Palomero, T., Giraldez, T., and Delapena, P., 1998, Modulation of human ERG K+ channel gating by activation of a G-protein coupled receptor and protein kinase C, J. Physiol. (London) 511:333–346.CrossRefGoogle Scholar
  16. Barry, D. M., and Nerbonne, J. M., 1996, Myocardial potassium channels: Electrophysiological and molecular diversity, Annu. Rev. Physiol. 58:363–394.PubMedCrossRefGoogle Scholar
  17. Barry, D. M., Trimmer, J. S., Merlie, J. P., and Nerbonne, J. M., 1995, Differential expression of voltage-gated K+ channel subunits in adult rat heart: Relationship to functional K+ channels, Circ. Res. 77:361–369.PubMedCrossRefGoogle Scholar
  18. Barry, D. M., Xu, H., Schuessler, R. B., and Nerbonne, J. M., 1998, Functional knockout of the transient outward current, long QT syndrome and cardiac remodelling in mice expressing a dominant negative Kv4 α subunit, Circ. Res. 83:560–567.PubMedCrossRefGoogle Scholar
  19. Beck, E. J., Sorensen, R. G., Slater, S. J., and Covarrubias, M., 1998, Interactions between multiple phosphorylation sites in the inactivation particle of a K+ channel: Insights into the molecular mechanism of protein kinase C action. J. Gen. Physiol. 112:71–74.PubMedCrossRefGoogle Scholar
  20. Bénitah, J. P., Gomez, A. M., Bailly, P., Da Ponte, J. P., Berson, G., Delgado, C., and Lorente, P., 1993, Heterogeneity of the early outward current in ventricular cells isolated from normal and hypertrophied rat hearts, J. Physiol. (London) 469:111–138.Google Scholar
  21. Benndorf, K., and Nilius, B., 1988, Properties of an early outward current in single cells of the mouse ventricle, Gen. Physiol. Biophys. 7:449–466.PubMedGoogle Scholar
  22. Benndorf, K., Markwardt, F., and Nilius, B., 1987, Two types of transient outward currents in cardiac ventricular cells of mice, Pflügers Arch. 409:641–643.PubMedCrossRefGoogle Scholar
  23. Beuckelmann, D. J., Näbauer, M., and Erdmann, E., 1993, Alterations in K+ currents in isolated human ventricular myocytes from patients with terminal heart failure, Circ. Res. 73:379–385.PubMedCrossRefGoogle Scholar
  24. Biervert, C., Schroeder, B. C., Kubisch, C., Berkoviv, S. F., Propping, P., Jentsch, T. J., and Steinlein, O. K., 1998, A potassium channel mutation in neonatal human epilepsy, Science 279:403–405.PubMedCrossRefGoogle Scholar
  25. Blair, T. A., Roberds, S. L., Tamkun, M. M., and Hartshorne, R. P., 1991, Functional characterization of RK5, a voltage-gated K+ channel cloned from the rat cardiovascular system, FEBS Lett. 295:211–213.PubMedCrossRefGoogle Scholar
  26. Bou-Abboud, E., and Nerbonne, J. M., 1999, Molecular correlates of the Ca++-independent depolarization-activated K+ currents in adult rat atrial myocytes, J. Physiol. (London) 517:407–420.CrossRefGoogle Scholar
  27. Boutjdir, M., Le Heuzey, J. Y., Lavergne, T., Chauvaud, S., Guize, L., Carpentier, A., and Peronneau, P., 1986,Inhomogeneity of cellular refractoriness in human atrium: Factor of arrhythmia? Pacing Clin. Electrophysiol. 9:1095–1100.PubMedCrossRefGoogle Scholar
  28. Boyden, P. A., and Jeck, C. D., 1995, Ion channel function in disease, Cardiovasc. Res. 29:312–318.PubMedGoogle Scholar
  29. Boyle, W. A., and Nerbonne, J. M., 1991, A novel type of depolarization-activated K+ current in isolated adult rat atrial myocytes, Am. J. Physiol. 260:H1236–H1247.PubMedGoogle Scholar
  30. Boyle, W. A., and Nerbonne, J. M., 1992, Two functionally distinct 4-aminopyridine-sensitive outward K+currents in adult rat atrial myocytes, J. Gen. Physiol. 100:1047–1061.CrossRefGoogle Scholar
  31. Brahmajothi, M. V., Morales, M. J., Liu, S., Rasmusson, R. L., Campbell, D. L., and Strauss, H. C., 1996, In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes,Circ. Res. 78:1083–1089.PubMedCrossRefGoogle Scholar
  32. Brahmajothi, M. V., Campbell, D. L., Rasmusson, R. L., Morales, M. J., Nerbonne, J. M., and Strauss, H. C., 1999, Distinct transient outward potassium current (I to) phenotypes and distribution of fast-inactivating potassium channel α subunits in ferret left ventricular myocytes, J. Gen. Physiol. 113:581–600.PubMedCrossRefGoogle Scholar
  33. Bryant, S. M., Wan, X. P., Shipsey, S. J., and Hart, G., 1998, Regional differences in the delayed rectifier currents (I Kr and I Ks) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea pig, Cardiovasc. Res. 40:322–331.PubMedCrossRefGoogle Scholar
  34. Busch, A. E., Malloy, K., Groh, W. J., Varnum, M. D., Adelman, J. P., and Maylie, J., 1994, The novel classIII antiarrhythmics NE-10064 and NE-10133 inhibit I sK channels expressed in Xenopus oocytes and I Ks in guinea pig ventricular myocytes, Biochem. Biophys. Res. Commun. 202:265–270.PubMedCrossRefGoogle Scholar
  35. Butler, A., Wei, A., Baker, K., and Salkoff, L., 1989, A family of putative potassium channel genes in Drosophila, Science 243:943–947.PubMedCrossRefGoogle Scholar
  36. Campbell, D. L., Rasmusson, R. L., Comer, M. B., and Strauss, H. C., 1993, The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. I. Basic characterization and kinetic analysis, J. Gen. Physiol. 101:571–601.PubMedCrossRefGoogle Scholar
  37. Campbell, D. L., Rasmusson, R. L., Comer, M. B., and Strauss, H. C., 1995, The cardiac calcium-independent transient outward potassium current: Kinetics, molecular properties, and role in ventricular repolarization, in: Cardiac Electrophysiology: From Cell to Bedside, 2nd ed. (D. P. Zipes and J. Jalife, eds.), W. B. Saunders Co., Philadelphia, pp. 83–96.Google Scholar
  38. Castellano, A., Chiara, M. D., Mellstr, B., Molina, A., Monje, F., Naranjo, J. R., and Lopez-Barneo, J., 1997, Identification and functional characterization of a K+ channel α subunit with regulatory properties specific to brain, J. Neurosci. 17:4652–4661.PubMedGoogle Scholar
  39. Castellino, R. C., Morales, M. J., Strauss, H. C., and Rasmusson, R. L., 1995, Time- and voltage-dependent modulation of a Kvl.4 channel by a β subunit (Kvβ3) cloned from ferret ventricle, Am. J. Physiol. 268:H385-H391.Google Scholar
  40. Chandy, K. G., and Gutman, G. A., 1995, Voltage-gated K+ channel genes, in: Handbook of Receptors and Channels (R. A. North, ed.), CRC Press, Boca Raton, Florida, pp. 1–71.Google Scholar
  41. Clark, R. B., Giles, W. R., and Imaizumi, Y., 1988, Properties of the transient outward current in rabbit atrial cells, J. Physiol. (London) 405:147–168.Google Scholar
  42. Clark, R. B., Bouchard, R. A., Salinas-Stefanson, E., Sanchez-Chalupa, J., and Giles, W. R., 1993, Heterogeneity of action potential waveforms and potassium currents in rat ventricle, Cardiovasc. Res. 27:1795–1799.PubMedCrossRefGoogle Scholar
  43. Comer, M. B., Campbell, D. L., Rasmusson, R. L., Lamson, D. R., Morales, M. J., Zhang, Y., and Strauss, H. C, 1994, Cloning and characterization of an I to-like potassium channel from ferret ventricle, Am. J. Physiol. 267:H1388–H1395.Google Scholar
  44. Coraboeuf, E., and Carmeliet, E., 1982, Existence of two transient outward currents in sheep Purkinje fibers, Pflügers Arch. 392:352–359.PubMedCrossRefGoogle Scholar
  45. Covarrubias, M., Wei, A., and Salkoff, L., 1991, Shaker, Shal, Shab, and Shaw express independent K+ current systems, Neuron 7:763–773.PubMedCrossRefGoogle Scholar
  46. Covarrubias, M., Wei, A., Salkoff, L., and Vybas, T. B., 1994, Elimination of rapid potassium channel inactivation by phosphorylation of the inactivation gate, Neuron 13:1403–1412.PubMedCrossRefGoogle Scholar
  47. Crumb, W. J., Jr., Pigott, J. D., and Clarkson, C. W., 1995, Comparison of the transient outward current in young and adult human atrial myocytes: Evidence for developmental changes, Am. J. Physiol. 268:H1335–H1342.PubMedGoogle Scholar
  48. Curran, M. E., Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D., and Keating, M. T., 1995, A molecular basis for cardiac arrhythmia: herg mutations cause long QT syndrome, Cell 80:795–803.PubMedCrossRefGoogle Scholar
  49. Daoud, E. G., Bogun, F., Goyal, R., Harvey, M., Man, K. C., Strickberger, A., and Morady, F., 1996, Effect of atrial fibrillation on atrial refractorriness in humans, Circulation 94:1600–1606.PubMedCrossRefGoogle Scholar
  50. Davies, M. P., An, R. H., Doevendans, P., Kubalak, S., Chien, K. R., and Kass, R. S., 1996, Developmental changes in ionic channel activity in the embryonic murine heart, Circ. Res. 78:15–25.PubMedCrossRefGoogle Scholar
  51. Deal, K. K., England, S. K., and Tamkun, M. M., 1996, Molecular physiology of cardiac potassium channels, Physiol. Rev. 76:49–67.PubMedGoogle Scholar
  52. Deck, K. A., and Trautwein, W., 1964, Ionic currents in cardiac excitation. Pflügers Archives. Eur. J. Physiol. 280:63–80.CrossRefGoogle Scholar
  53. Dixon, J. E., and McKinnon, D., 1994, Quantitative analysis of mRNA expression in atrial and ventricular muscle of rats, Circ. Res. 75:252–260.PubMedCrossRefGoogle Scholar
  54. Dixon, J. E., Shi, W. S., Wang, H. S., McDonald, C., Yu, H., Wymore, R. S., Cohen, I. S., and McKinnon, D., 1996, The role of the Kv4.3 K+ channel in ventricular muscle: A molecular correlate for the transient outward current, Circ. Res. 79:659–668.PubMedCrossRefGoogle Scholar
  55. Drain, P., Dubin, A. E., and Aldrich, R. W., 1994, Regulation of Shaker K+ channel inactivation gating by the cAMP-dependent protein kinase, Neuron 12:1097–1109.PubMedCrossRefGoogle Scholar
  56. Drewe, J. A., Verma, S., Frech, G., and Joho, R. L., 1992, Distinct spatial and temporal expression patterns of K+ channel mRNAs from different subfamilies, J. Neurosci. 12:538–548.PubMedGoogle Scholar
  57. Drici, M. D., Burklow, T. R., Haridasse, V., Glazer, R. I., and Woosley, R. L., 1996, Sex hormones prolong the QT interval and down regulate potassium channel expression in the rabbit heart, Circulation 94:1471–1474.PubMedCrossRefGoogle Scholar
  58. Dudel, J., Peper, K., Rudel, R., Trautwein, W., 1967, The dynamic chloride component of membrane current in Purlinje fibers. Pflügers Archiv. fur die Gesamte Physiologie des Menschen und der Tiere. 295 (3):197–212.PubMedCrossRefGoogle Scholar
  59. Duff, H. J., Feng, Z. P., Wang, L., and Sheldon, R. S., 1997, Regulation of expression of the [3H]dofetilide binding site associated with the delayed rectifier K+ channel by dexamethasone in neonatal mouse ventricle, J. Mol. Cell. Cardiol. 29:1959–1965.PubMedCrossRefGoogle Scholar
  60. Ehring, G. R., Kerschbaum, H. H., Eder, C., Neben, A. L., Fanger, C. M., Khoury, R. M., Negulescu, P., and Cahalan, M. D., 1998, A nongenomic mechanism for progesterone-mediated immunosuppression- inhibition of K+ channels, Ca2+ signaling, and gene expression in T lymphocytes, J. Exp. Med. 188:1593–1602.PubMedCrossRefGoogle Scholar
  61. England, S. K., Uebele, V. N., Shear, H., Kodali, K., Bennett, P. B., and Tamkun, M. M., 1995a, Characterization of a K+ channel β subunit expressed in human heart, Proc. Natl. Acad. Sci., U.S.A. 92:6309–6313.PubMedCrossRefGoogle Scholar
  62. England, S. K., Uebele, V. N., Kodali, K., Bennett, P. B., and Tamkun, M. M., 1995b, A novel K+ channel β subunit (hKv?1. 3) is produced via alternative mRNA splicing, J. Biol. Chem. 270:28531–28534.PubMedCrossRefGoogle Scholar
  63. Escande, D., Loisance, D., Planche, C., and Coraboeuf, E., 1985, Age-related changes of the action potential plateau shape in isolated human atrial fibers, Am. J. Physiol. 249:H843–H850.PubMedGoogle Scholar
  64. Escande, D., Coulombe, A., Faivre, J. F., Deroubaix, E., and Corabouef, E., 1987, Two types of transient outward currents in adult human atrial cells, Am. J. Physiol. 252:H142–H148.PubMedGoogle Scholar
  65. Fadool, D. A., Holmes, T. C., Berman, K., Dagan, D., and Levitan, I. B., 1997, Tyrosine phosphorylation modulates current amplitude and kinetics of a neuronal voltage-gated potassium channel, J. Neurophysiol. 78:1563–1573.PubMedGoogle Scholar
  66. Fedida, D., and Giles, W. R., 1991, Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle, J. Physiol. (London) 442:191–209.Google Scholar
  67. Fedida, D., Wible, B., Wang, Z., Fermini, B., Faust, F., Nattel, S., and Brown, A. M., 1993, Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current, Circ. Res. 73:210–216.PubMedCrossRefGoogle Scholar
  68. Feng, J., Wible, B., Li, G. R., Wang, Z., and Nattel, S., 1997, Antisense oligonucleotides directed against Kvl.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes, Circ. Res. 80:572–579.PubMedCrossRefGoogle Scholar
  69. Fermini, B., Wang, Z., Duan, D., and Nattel, S., 1992, Differences in rate dependence of the transient outward current in rabbit and human atrium, Am. J. Physiol. 263:H1747–H1754.PubMedGoogle Scholar
  70. Fink, M., Duprat, F., Lesage, F., Heurteaux, C., Romey, G., Barhanin, J., and Lazdunski, M., 1996, A new K+ channel β subunit to specifically enhance Kv2.2 (CDRK) expression, J. Biol. Chem. 271:26341–26348.PubMedCrossRefGoogle Scholar
  71. Fiset, C., Clark, R. B., Shimoni, Y., and Giles, W. R., 1997, Shal-type channels contribute to the Ca2+ -independent transient outward K+ current in rat ventricle, J. Physiol. (London) 500:51–64.Google Scholar
  72. Fiset, C., Clark, R. B., Larsen, T. S., and Giles, W. R., 1998, A rapidly activating, sustained K+ current modulates repolarization and excitation-contraction coupling in adult mouse ventricles, J. Physiol. (London) 504:557–563.CrossRefGoogle Scholar
  73. Fisher, D. A., Dussault, J. H., Sack, J., and Chopra, I., 1977, Ontogenesis of hypothalamic-pituitary-thyroid function and metabolism in man, sheep and rat, Rec. Prog. Horm. Res. 33:59–107.Google Scholar
  74. Folander, K., Smith, J. S., Antanavage, J., Bennett, C., Stein, R. B., and Swanson, R., 1990, Cloning and expression of the delayed rectifier IsK channel from neonatal rat heart and diethylstilbestrol-primed rat uterus, Proc. Natl. Acad. Sci., U.S.A. 87:2975–2979.PubMedCrossRefGoogle Scholar
  75. Follmer, C. H., and Colatsky, T. J., 1990, Block of delayed rectifier potassium current, I K, by flecainide and E-4031 in cat ventricular myocytes, Circulation 82:289–293.PubMedCrossRefGoogle Scholar
  76. Fozzard, H. A., and Hiraoka, M., 1973, The positive dynamic current and its inactivation properties in cardiac Purkinje fibres, J. Physiol. (London) 234:569–586.Google Scholar
  77. Freeman, L. C., and Kass, R. S., 1993, Delayed rectifier potassium channels in ventricle and sinoatrial node of guinea pig: Molecular and regulatory properties, Cardiovasc. Drugs Ther. 7:627–635.PubMedCrossRefGoogle Scholar
  78. Freeman, L. C., Pacioretty, L. M., Moise, N. S., Kass, R. S., and Gilmour, R. F., Jr., 1997, Decreased density of I to in left ventricular myocytes from German shepherd dogs with inherited arrhythmias, J. Cardiovasc. Electrophysiol. 8:872–883.PubMedCrossRefGoogle Scholar
  79. Furukawa, T., Myerburg, R. J., Furukawa, N., Bassett, A. L., and Kimura, S., 1990, Differences in transient outward currents of feline endocardial and epicardial myocytes, Circ. Res. 67:1287–1291.PubMedCrossRefGoogle Scholar
  80. Furukawa, T., Kimura, S., Furukawa, N., Bassett, A. L., and Myerburg, R. J., 1992, Potassium rectifier currents differ in myocytes of endocardial and epicardial origin, Circ. Res. 70:91–103.PubMedCrossRefGoogle Scholar
  81. Gadsby, D. C., 1990, Effects of β adrenergic catecholamines on membrane currents in cardiac cells, in: Cardiac Electrophysiology: A Textbook (M. R. Rosen, M. J. Jansen, and A. L. Wit, eds.), Futura Publishing Co., Mt. Kisco, New York, pp. 857–876.Google Scholar
  82. Gidh-Jain, M., Huang, B., Jain, P., and El-Sherif, N., 1996, Differential expression of voltage-gated K+ channel genes in left ventricular remodeled myocardium after experimental myocardial infarction, Circ. Res. 79:669–675.PubMedCrossRefGoogle Scholar
  83. Giles, W. R., and Imaizumi, Y., 1988, Comparison of potassium currents in rabbit atrial and ventricular cells, J. Physiol. (London) 405:123–145.Google Scholar
  84. Giles, W. R., and Van Ginneken, A. C., 1985, A transient outward current in isolated cells from the crista terminalis of rabbit heart, J. Physiol. (London) 368:243–264.Google Scholar
  85. Giles, W. R., Clark, R. B., and Braun, A. P., 1996, Ca2+-independent transient outward current in mammalian heart, in: Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters (M. Morad, Y. Kurachi, A. Noma, and M. Hosada, eds.), Kluwer Press, Amsterdam, pp. 141–168.CrossRefGoogle Scholar
  86. Goldstein, S. A., and Miller, C., 1991, Site-specific mutations in a minimal voltage-gated K+ channel alter ion selectivity and open channel block, Neuron 7:403–408.PubMedCrossRefGoogle Scholar
  87. Gomez, A. M., Bénitah, J. -P., Henzel, D., Vinet, A., Lorente, P., and Delgado, C., 1997, Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle, Am. J. Physiol. 272:H1078–H1086.PubMedGoogle Scholar
  88. Gross, G. J., Burke, R. P., and Castle, N. A., 1995, Characterization of transient outward current in young human myocytes, Cardiovasc. Res. 29:112–117.PubMedGoogle Scholar
  89. Guo, W., Kamiya, K., and Toyama, J., 1995, bFGF promotes functional expression of transient outward currents in cultured neonatal rat ventricular myocytes, Pflügers Arch. 430:1015–1017.PubMedCrossRefGoogle Scholar
  90. Guo, W., Kamiya, K., and Toyama, J., 1996, Modulated expression of transient outward current in cultured neonatal rat ventricular myocytes: Comparison with development in situ, Cardiovasc. Res. 32:524–533.PubMedGoogle Scholar
  91. Guo, W., Kamiya, K., and Toyama, J., 1997a, Roles of the voltage-gated K+ channel subunits, Kvl.5 and Kv1.4, in the developmental changes of K+ currents in cultured neonatal rat ventricular cells, Pflügers Arch. 434:206–208.PubMedCrossRefGoogle Scholar
  92. Guo, W., Kamiya, K., and Toyama, J., 1997b, Differential effects of chronic membrane depolarization on the K+ channel activities in cultured rat ventricular cells, Cardiovasc. Res. 33:139–146.PubMedCrossRefGoogle Scholar
  93. Guo, W., Kada, K., Kamiya, K., and Toyama, J., 1997c, IGF-I regulates K+ channel expression of cultured neonatal rat ventricular myocytes, Am. J. Physiol. 272:H2599–H2606.PubMedGoogle Scholar
  94. Guo, W., Kamiya, K., Liu, W., and Toyama, J., 1997d, Developmental changes of the ultrarapid delayed rectifier K+ current in rat ventricular myocytes, Pflügers Arch. 433:442–445.PubMedCrossRefGoogle Scholar
  95. Guo, W., Kamiya, K., Hojo, M., Kodama, I., and Toyama, J., 1998, Regulation of Kv4.2 and Kv1.4 K+ channel expression by myocardial hypertrophic factors in cultured newborn rat ventricular cells, J. Mol. Cell. Cardiol. 30:1449–1455.PubMedCrossRefGoogle Scholar
  96. Guo, W., Xu, H., London, B., and Nerbonne, J. M., 1999, Molecular basis of transient outward K+ diversity in mouse ventricular myocytes, J. Physiol. London), submitted.Google Scholar
  97. Guy, H. R., Durell, S. R., Warmke, J., Drysdale, R., Ganetzky, B., 1991, Similarities in amino acid sequences of Drosophila eag and cyclic nucleotide-gated channels. Science 254(5032):730.PubMedCrossRefGoogle Scholar
  98. Hiraoka, M., and Kawano, S., 1989, Calcium-sensitive and insensitive transient outward current in rabbit ventricular myocytes, J. Physiol. (London) 410:187–212.Google Scholar
  99. Honoré, E., Attali, B., Romey, G., Heurteaux, C., Ricard, P., Lesage, F., and Lazdunski, M., 1991, Cloning, expression, pharmacology and regulation of a delayed rectifier K+ channel in mouse heart, EMBO J. 10:2805–2811.PubMedGoogle Scholar
  100. Horie, M., Hayashi, S., and Kawai, C., 1990, Two types of delayed rectifying K+ channels in atrial cells of guinea pig heart, Jpn. J. Physiol. 40:479–490.PubMedCrossRefGoogle Scholar
  101. Hugnot, J. P., Salinas, M., Lesage, F., Guillemare, E., De Weile, J., Heurteaux, C., Mattei, M. G., and Lazdunski, M., 1996, Kv8.1, a new neuronal potassium channel subunit with specific inhibitory Fproperties towards Shab and Shaw channels, EMBO J. 15:3322–3331.PubMedGoogle Scholar
  102. Hume, J. R., and Uehara, A., 1985, Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes, J. Physiol. (London) 368:525–544.Google Scholar
  103. Inoue, M., and Imanaga, I., 1993, Masking of A-type K+ channel in guinea pig cardiac cells by extracellular Ca++,Am. J. Physiol. 264:C1434–C1438.PubMedGoogle Scholar
  104. Jan, L. Y., and Jan, Y. N., 1992, Structural elements involved in specific K+ channel functions. Annu. Rev. Physiol. 54:537–555.PubMedCrossRefGoogle Scholar
  105. Jeck, C. D., and Boyden, P. A., 1992, Age-related appearance of outward currents may contribute to developmental differences in ventricular repolarization, Circ. Res. 71:1390–1403.PubMedCrossRefGoogle Scholar
  106. Jiang, M., Tseng-Crank, J., and Tseng, G. N., 1997, Suppression of slow delayed rectifier current by a truncated isoform of KvLQT1 cloned from normal human heart, J. Biol. Chem. 272:24109–24112.PubMedCrossRefGoogle Scholar
  107. Johns, D. C., Nuss, H. B., and Marban, E., 1997, Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4.2 constructs, J. Biol. Chem. 272: 31598–31603.PubMedCrossRefGoogle Scholar
  108. Kääb, S., Nuss, H. B., Chiamvimonvat, N., O’Rourke, B., Pak, P. H., Kass, D. A., Marban, E., and Tomaselli, G. F., 1996, Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure, Circ. Res. 78:262–273.PubMedCrossRefGoogle Scholar
  109. Kääb, S., Dixon, J., Duc, J., Ashen, D., Näbauer, M., Beuckelmann, D. J., Steinbeck, G., McKinnon, D., and Tomaselli, G. F., 1998, Molecular basis of transient outward potassium current downregulation in human heart failure-a decrease in Kv4.3 mRNA correlates with a reduction in current density, Circulation 98:1383–1393.PubMedCrossRefGoogle Scholar
  110. Kalman, K., Nguyen, A., Tseng-Crank, J., Dukes, I. D., Chandy, G., Hustad, C. M., Copeland, N. G., Jenkins, N. A., Mohrenweiser, H., Brandriff, B., Cahalan, M., Gutman, G. A., and Chandy, K. G., 1998, Genomic organization, chromosomal localization, tissue distribution, and biophysical characterization of a novel mammalian Shaker-related voltage-gated potassium channel, Kvl.7, J. Biol. Chem. 273:5851–5857.PubMedCrossRefGoogle Scholar
  111. Kamb, A., Tseng-Crank, J., and Tanouye, M. A., 1988, Multiple components of the Drosophila Shaker gene may contribute to potassium channel diversity, Neuron 1:421–430.PubMedCrossRefGoogle Scholar
  112. Kenyon, J. L., and Gibbons, W. R., 1979a, Influence of chloride, potassium, and tetraethylammonium on the early outward current of sheep cardiac Purkinje fibers, J. Gen. Physiol. 73:117–138.PubMedCrossRefGoogle Scholar
  113. Kenyon, J. L., and Gibbons, W. R., 1979b, 4-Aminopyridine and the early outward current of sheep cardiac Purkinje fibers, J. Gen. Physiol. 73:139–157.PubMedCrossRefGoogle Scholar
  114. Kiehn, J., Karle, C., Thomas, D., Yao, X. Z., Brachman, J., and Kubler, W., 1998, HERG potassium channel activation is shifted by phorbol esters via protein kinase A-dependent pathways, J. Biol. Chem. 273:25285–25291.PubMedCrossRefGoogle Scholar
  115. Kilborn, M. J., and Fedida, D. A., 1990, A study of the developmental changes in outward currents in rat ventricular myocytes, J. Physiol. (London) 430:37–60.Google Scholar
  116. Konarzewska, H., Peeters, G. A., and Sanguinetti, M. C., 1995, Repolarizing K+ currents in nonfailing human hearts: Similarities between right-septal subendocardial and left epicardial ventricular myocytes, Circulation 92:1179–1187.PubMedCrossRefGoogle Scholar
  117. Kong, W., Po, S., Yamagishi, T., Ashen, M. D., Stetten, G., and Tomaselli, G. F., 1998, Isolation and characterization of the human gene encoding I to: Further diversity by alternative mRNA splicing, Am. J. Physiol. 275:H1963–H1970.PubMedGoogle Scholar
  118. Kupershmidt, S., Snyders, D., Raes, A., and Roden, D., 1998, A K+ channel splice variant common in human heart lacks a C-terminal domain required for expression of rapidly activating delayed rectifier current, J. Biol. Chem. 273:27231–27235.PubMedCrossRefGoogle Scholar
  119. Lees-Miller, J. P., Kondo, C., Wang, L., and Duff, H. J., 1997, Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts, Circ. Res. 81:719–726.PubMedCrossRefGoogle Scholar
  120. Lesage, F., Attali, B., Lazdunski, M., and Barhanin, J., 1992, IsK, a slowly activating voltage-sensitive K+ channel: Characterization of multiple cDNAs and gene organization in the mouse, FEBS Lett. 301:168–172.PubMedCrossRefGoogle Scholar
  121. Levitan, E. S., Gealy, R., Trimmer, J. S., and Takimoto, K., 1995, Membrane depolarization inhibits Kv1.5 voltage-gated K+ channel gene transcription and protein expression in pituitary cells, J. Biol. Chem. 270:6036–6041.PubMedCrossRefGoogle Scholar
  122. Levitan, E. S., Hershman, K. M., Sherman, T. G., and Takimoto, K., 1996, Dexamethasone and stress upregulate Kv1.5 K+ channel gene expression in rat ventricular myocytes, Neuropharmacology 35:1001–1006.PubMedCrossRefGoogle Scholar
  123. Li, G. R., Feng, J., Yue, L., Carrier, M., and Nattel, S., 1996, Evidence for two components of delayed rectifier K+ current in human ventricular myocytes, Circ. Res. 78:689–696.PubMedCrossRefGoogle Scholar
  124. Litovsky, S. H., and Antzelevitch, C., 1988, Transient outward current prominent in canine ventricular epicardium but not endocardium, Circ. Res. 72:1092–1103.Google Scholar
  125. Liu, D. -W., and Antzelevitch, C., 1995, Characteristics of the delayed rectifier current (I Kr and I Ks) in canine ventricular epicardial, midmyocardial, and endocardial myocytes, Circ. Res. 76:351–365.PubMedCrossRefGoogle Scholar
  126. Liu, D. -W., Gintant, G. A., and Antzelevitch, C., 1993, Ionic basis for electrophysiological distinctions among epicardial, midmyocardial and epicardial myocytes, Circ. Res. 72:671–687.PubMedCrossRefGoogle Scholar
  127. Liu, X. K., Katchman, A., Ebert, S. N., and Woosley, R. L., 1998, The antiestrogen tamoxifen blocks the delayed rectifier potassium current, I Kr, in rabbit ventricular myocytes, J. Pharmacol. Exp. Ther. 287:877–883.PubMedGoogle Scholar
  128. London, B., Trudeau, M. C., Newton, K. P., Beyer, A. K., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Satler, C. A., and Robertson, G. A., 1997, Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current, Circ. Res. 81:870–878.PubMedCrossRefGoogle Scholar
  129. London, B., Wang, D. W., Hill, J. A., and Bennett, P. B., 1998a, The transient outward current in mice lacking the potassium channel gene Kv1.4, J. Physiol. (London) 81:870–878.Google Scholar
  130. London, B., Jeron, A., Zhou, J., Buckett, P., Han, X., Mitchell, G. F., and Koren, G., 1998b, Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and the first transmembrane segment of a voltage-gated potassium channel, Proc. Natl. Acad. Sci., U.S.A. 95:2926–2931.PubMedCrossRefGoogle Scholar
  131. London, B., Aydar, E., Lewarchik, C. M., Seibel, J. S., January, C. T., and Robertson, G. A., 1998c, N- and C-terminal isoforms of HERG in the human heart, Biophys. J. 74:A26.Google Scholar
  132. MacKinnon, R., 1991, Determination of the subunit stoichiometry of a voltage-activated potassium channel, Nature 350:232–235.PubMedCrossRefGoogle Scholar
  133. Main, M. C, Bryant, S. M., and Hart, G., 1998, Regional differences in action potential characteristics and membrane currents of guinea-pig left ventricular myocytes, Exp. Physiol. 83:747–761.PubMedGoogle Scholar
  134. Majumder, K., Debiasi, M., Wang, Z., and Wible, B., 1995, Molecular cloning and functional expression of a novel potassium channel β subunit from human atrium, FEBS Lett. 361: 13–16.PubMedCrossRefGoogle Scholar
  135. Matsubara, H., Liman, E. R., Hess, P., and Koren, G., 1991, Pretranslational mechanisms determine the type of potassium channel expressed in the rat skeletal and cardiac muscles, J. Biol. Chem. 266:13324–13328.PubMedGoogle Scholar
  136. Matsubara, H., Suzuki, J., and Inada, M., 1993, Shaker-related potassium channel, Kv1.4, mRNA regulation in cultured rat heart myocytes and differential expression of Kv1.4 and Kv1.5 genes in myocardial development and hypertrophy, J. Clin. Invest. 92:1659–1666.PubMedCrossRefGoogle Scholar
  137. Mays, D. J., Foose, J. M., Philipson, L. H., and Tamkun, M. M., 1995, Localization of the Kv1.5 K+ channel protein in explanted cardiac tissue, J. Clin. Invest. 96:282–292.PubMedCrossRefGoogle Scholar
  138. McDonald, T. V., Yu, Z., Ming, Z., Palma, E., Meyers, M. B., Wang, K. W., Goldstein, S. A., and Fishman, G. I., 1997, A minK-HERG complex regulates the cardiac potassium current I (Kr). Nature 388:289–292.PubMedCrossRefGoogle Scholar
  139. Mészáros, J., Ryder, K. O., and Hart, G., 1996, Transient outward current in catecholamine-induced cardiac hypertrophy in the rat, Am. J. Physiol. 271:H2360–H2367.PubMedGoogle Scholar
  140. Morales, M. J., Castellino, R. C., Crews, A. L., Rasmusson, R. L., and Strauss, H. C, 1995, A novel β subunit increases the rate of inactivation of specific voltage-gated potassium channel α subunits, J. Biol. Chem. 270:6272–6277.PubMedCrossRefGoogle Scholar
  141. Mori, Y., Matsubara, H., Folco, E., Siegel, A., and Koren, G., 1993, The transcription of a mammalian voltage-gated potassium channel is regulated by cAMP in a cell-specific manner, J. Biol. Chem. 268:26482–26493.PubMedGoogle Scholar
  142. Muniz, Z. M., Parcej, D. N., and Dolly, J. O., 1992, Characterization of monoclonal antibodies against voltage-dependent K+ channels raised using α-dendrotoxin acceptors purified from bovine brain, Biochemistry 31:12297–12303.PubMedCrossRefGoogle Scholar
  143. Murai, T., Kakizuka, A., Takumi, T., Ohkubo, H., and Nakanishi, S., 1989, Molecular cloning and sequence analysis of human genomic DNA encoding a novel membrane protein which exhibits slowly activating potassium channel activity, Biochem. Biophys. Res. Commun. 61:176–181.CrossRefGoogle Scholar
  144. Murakoshi, H., Shi, G. Y., Scannevin, R. H., and Trimmer, J. S., 1997, Phosphorylation of the Kv2.1 K+ channel alters voltage-dependent activation, Mol. Pharmacol. 52:821–828.PubMedGoogle Scholar
  145. Murray, K. T., Fahrig, S. A., Deal, K. K., Po, S. S., Hu, N. N., Snyders, D. J., Tamkun, M. M., and Bennett, P. B., 1994, Modulation of an inactivating human cardiac K+ channel by protein kinase C, Circ. Res. 75:999–1005.PubMedCrossRefGoogle Scholar
  146. Näbauer, M., and Kääb, M., 1998, Potassium channel down regulation in heart failure, Cardiovasc. Res. 37:324–334.PubMedCrossRefGoogle Scholar
  147. Näbauer, M., Beuckelmann, D. J., and Erdmann, E., 1993, Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure, Circ. Res. 73:386–394.PubMedCrossRefGoogle Scholar
  148. Näbauer, M., Barth, A., and Kääb, S., 1998, A second calcium-independent transient outward current present in human ventricular myocardium, Circulation 98:1–231.CrossRefGoogle Scholar
  149. Nagaya, N., and Papazian, D. M., 1997, Potassium channel α and β subunits assemble in the endoplasmic reticulum, J. Biol. Chem. 272:3022–3027.PubMedCrossRefGoogle Scholar
  150. Nakahira, K., Shi, G., Rhodes, K. J., and Trimmer, J. S., 1996, Selective interaction of voltage-gated K+ channel β subunits with α subunits, J. Biol. Chem. 271:7084–7089.PubMedCrossRefGoogle Scholar
  151. Nakamura, K., and Iijima, T., 1994, Postnatal changes in mRNA expression of the K+ channel in rat cardiac ventricles, Jpn. J. Pharmacol. 66:489–492.PubMedCrossRefGoogle Scholar
  152. Nakamura, T. Y., Coetzee, W. T., Vega-Saenz De Miera, E., Artman, M., and Rudy, B., 1997, Modulation of Kv4 channels, key components of rat ventricular transient outward current, by PKC, Am. J. Physiol. 273:H1775–H1786.PubMedGoogle Scholar
  153. Nakayama, T., and Irisawa, H., 1985, Transient outward current carried by potassium and sodium in quiescent atrioventricular node cells of rabbits, Circ. Res. 57:65–73.PubMedCrossRefGoogle Scholar
  154. Nerbonne, J. M., 1998, Regulation of voltage-gated K+ channel expression in the developing mammalian myocardium, J. Neurobiol. 37:37–59.PubMedCrossRefGoogle Scholar
  155. Nishiyama, A., Kambe, F., Kamiya, K., Seo, H., and Toyama, J., 1998, Effects of thyroid status on expression of voltage-gated potassium channels in rat left ventricle, Cardiovasc. Res. 40:343–351.PubMedCrossRefGoogle Scholar
  156. Nuss, H. B., and Marban, E., 1994, Electrophysiological properties of neonatal mouse cardiac cells in primary culture, J. Physiol. (London) 479:265–279.Google Scholar
  157. Nuss, H. B., Johns, D. C., Kääb, S., Tomaselli, G. F., Kass, D., Lawrence, J. H., and Marban, E., 1996, Reversal of potassium channel deficiency in cells from failing hearts by adenoviral gene transfer: A prototype for gene therapy for disorders of cardiac excitability and contractility, Gene Ther. 3:900–912.PubMedGoogle Scholar
  158. Ohya, S., Tanaka, M., Oku, T., Asai, Y., Watanabe, M., Giles, W. R., and Imaizumi, Y., 1997, Molecular cloning and tissue distribution of an A-type K+ channel α-subunit, Kv4.3 in the rat, FEBS Lett. 420:47–53.PubMedCrossRefGoogle Scholar
  159. Papazian, D. M., Schwarz, T. L., Temple, B. L., Jan, Y. N., and Jan, L. Y., 1987, Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila, Science 237:749–753.PubMedCrossRefGoogle Scholar
  160. Petersen, K. R., and Nerbonne, J. M., 1999, Expression environment determines K+ current properties: Kv1 and Kv4 α subunit-induced K+ currents in mammalian cell lines and cardiac myocytes, Pflügers Arch. 437:381–392.PubMedCrossRefGoogle Scholar
  161. Po, S., Snyders, D. J., Baker, R., Tamkun, M. M., and Bennett, P. B., 1992, Functional expression of an inactivating potassium channel cloned from human heart, Circ. Res. 71:732–736.PubMedCrossRefGoogle Scholar
  162. Po, S., Roberds, S., Snyders, D. J., Tamkun, M. M., and Bennett, P. B., 1993, Heteromultimeric assembly of human potassium channels: Molecular basis of a transient outward current?, Circ. Res. 72:1326–1336.PubMedCrossRefGoogle Scholar
  163. Pond, A. L., Scheve, B. K., Benedict, A. T., Petrecca, K., Van Wagoner, D. R., Shrier, A., and Nerbonne, J. M., 2000, Expression of distinct ERG proteins in rat, mouse, and human heart: Relation to functional I Kr channels, J. Biol. Chem 275:5997–6006.PubMedCrossRefGoogle Scholar
  164. Pongs, O., 1992, Molecular biology of voltage-dependent potassium channels, Physiol. Rev. 72:S69–S88.PubMedGoogle Scholar
  165. Pongs, O., Kecskemethy, N., Muller, R., Krah-Jentgens, I., Baumann, A., Kiltz, H. H., Canal, I., Llamazares, S., and Ferrus, A., 1988, Shaker encodes a family of putative potassium channel proteins in the nervous system, EMBO J. 7:1087–1096.PubMedGoogle Scholar
  166. Potreau, D., Gomez, J. P., and Fares, N., 1996, Depressed transient outward current in single hypertrophied cardiomyocytes isolated from the right ventricle of ferret heart, Cardiovasc. Res. 30:440–448.Google Scholar
  167. Qin, D., Zhang, Z. -H., Boutjdir, M., Jain, P., and El-Sherif, N., 1996, Cellular and ionic basis of arrhythmias in post-infarction remodeled ventricular myocardium, Circ. Res. 79:461–473.PubMedCrossRefGoogle Scholar
  168. Rettig, J., Heinemann, S. H., Wunder, F., Lorra, C., Parcej, D. N., Dolly, J. O., and Pongs, O., 1994, Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit, Nature 369:289– 294.PubMedCrossRefGoogle Scholar
  169. Roberds, S. L., and Tamkun, M. M., 1991a, Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAS expressed in rat heart, Proc. Natl. Acad. Sci. U.S.A. 88:1798–1802.PubMedCrossRefGoogle Scholar
  170. Roberds, S. L., and Tamkun, M. M., 1991b, Developmental expression of cloned cardiac potassium channels, FEBS Lett. 284:152–154.PubMedCrossRefGoogle Scholar
  171. Roberds, S. L., Knoth, K. M., Po, S., Blair, T. A., Bennett, P. B., Hartshorne, R. P., Snyders, D. J., and Tamkun, M. M., 1993, Molecular biology of the voltage-gated potassium channels of the cardiovascular system, J. Cardiovasc. Electrophysiol. 4:68–80.PubMedCrossRefGoogle Scholar
  172. Robertson, B., 1997, The real life of voltage-gated K+ channels: More than model behaviour, Trends Pharmacol. Sci. 18:474–483.PubMedGoogle Scholar
  173. Roeper, J., Lorra, C., and Pongs, O., 1997, Frequency-dependent inactivation of mammalian A-type K+ channel Kv 1.4 regulated by Ca2+/calmodulin-dependent protein kinase, J. Neurosci. 17:3379–3391.PubMedGoogle Scholar
  174. Rosen, M. R., Cohen., I. R., Danilo, P., and Steinberg, S. P., 1998, The heart remembers, Cardiovasc. Res. 40:469–482.PubMedCrossRefGoogle Scholar
  175. Rozanski, G. J., Xu, Z., Zhang, K., and Patel, K. P., 1998, Altered K+ current of ventricular myocytes in rats with chronic myocardial infarction. Am. J. Physiol. 273:259–265.Google Scholar
  176. Salata, J. J., Jurkiewicz, N. K., Jow, B., Folander, K., Guinoso, P. J., Raynor, B., Swanson, R., and Fermini, B., 1996, I K of rabbit ventricle is composed of two currents: Evidence for I Ks, Am. J. Physiol. 271:H2477–H2489.PubMedGoogle Scholar
  177. Salinas, M., Duprat, F., Heurteaux, C., Hugnot, J. P., and Lazdunski, M., 1997, New modulatory α subunits for mammalian Shab K+ channels, J. Biol. Chem. 272:24371–24379.PubMedCrossRefGoogle Scholar
  178. Sánchez-Chapula, J., Elizalde, A., Navarro-Polanco, R., and Barajas, H., 1994, Differences in outward currents between neonatal and adult rabbit ventricular cells, Am. J. Physiol. 266:H1184–H1194.PubMedGoogle Scholar
  179. Sanguinetti, M. C., and Jurkiewicz, N. K., 1990, Two components of cardiac delayed rectifier K+ current, J. Gen. Physiol. 96:195–215.PubMedCrossRefGoogle Scholar
  180. Sanguinetti, M. C., and Jurkiewicz, N. K., 1991, Delayed rectifier outward K+ current is composed of two currents in guinea pig atrial cells, Am. J. Physiol. 260:H393-H399.PubMedGoogle Scholar
  181. Sanguinetti, M. C., Jurkiewicz, N. K., 1992, Role of external Ca2+ and K+ in gating of cardiac delayed rectifier K+ currents, Pflügers Archiv.-Eur. J. Physiol. 420(2):180–186.CrossRefGoogle Scholar
  182. Sanguinetti, M. C., Jiang, C., Curran, M. E., and Keating, M. T., 1995, A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the I Kr potassium channel, Cell 81:299–307.PubMedCrossRefGoogle Scholar
  183. Sanguinetti, M. C, Curran, M. E., Zou, A., Shen, J., Spector, P. S., Atkinson, D. L., and Keating, M. T., 1996, Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac I Ks potassium channel, Nature 384:80–83.PubMedCrossRefGoogle Scholar
  184. Sanguinetti, M. C., Johnson, J. J., Hammerland, L. G., Kelbaugh, P. R., Volkman, R. A., Saccomano, N. A., and Mueller, A. L., 1997, Heteropodatoxins: Peptides isolated from spider venom that block Kv4.2 potassium channels, Mol. Pharmacol. 51:491–498.PubMedGoogle Scholar
  185. Schroeder, B. J., Kubisch, C., Stein, V., and Jentsch, T. J., 1998, Moderate loss of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy, Nature 396:687–690.PubMedCrossRefGoogle Scholar
  186. Schwalbe, R. A., Wang, Z., Wible, B., and Brown, A. M., 1995, Potassium channel structure and function as reported by a single glycosylation sequon, J. Biol. Chem. 270:15336–15340.PubMedCrossRefGoogle Scholar
  187. Schwarz, T. L., Temple, B. L., Papazian, D. M., Jan, Y. N., and Jan, L. Y., 1988, Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila, Nature 331:137–142.PubMedCrossRefGoogle Scholar
  188. Sewing, S., Roeper, J., and Pongs, O., 1996, Kvβl subunit binding specific for Shaker-related potassium channel α subunits, Neuron 16:455–463.PubMedCrossRefGoogle Scholar
  189. Shi, G., Nakahira, K., Hammond, S., Rhodes, K. J., Schechter, L. E., and Trimmer, J. S., 1996, β subunits promote K+ channel surface expression through effects early in biosynthesis, Neuron 16:843–852.PubMedCrossRefGoogle Scholar
  190. Shi, W., Wymore, R. S., Wang, H. -S., Pan, Z., Cohen, I. S., McKinnon, D., and Dixon, J. E., 1997, Identification of two nervous system-specific members of the erg potassium channel gene family, J. Neurosci. 17:9423–9432.PubMedGoogle Scholar
  191. Shibasaki, T., 1987, Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart, J. Physiol. 387:227–250.PubMedGoogle Scholar
  192. Shibata, E. F., Drury, T., Refsum, H., Aldrete, V., and Giles, W., 1989, Contributions of a transient outward current to repolarization in human atrium, Am. J. Physiol. 257:H1773–H1781.PubMedGoogle Scholar
  193. Shimoni, Y., Banno, H., and Clark, R. B., 1992, Hyperthyroidism selectively modifies a transient outward potassium current in rabbit ventricular and atrial myocytes, J. Physiol. (London) 457:369–389.Google Scholar
  194. Shimoni, Y., Firek, I., Severson, D., and Giles, W. R., 1994, Short term diabetes alters K+ currents in rat ventricular myocytes, Circ. Res. 74:620–628.PubMedCrossRefGoogle Scholar
  195. Shimoni, Y., Severson, D., and Giles, W. R., 1995, Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle, J. Physiol. (London) 488:673–688.Google Scholar
  196. Shimoni, Y., Fiset, C., Clark, R. B., Dixon, J. E., McKinnon, D., and Giles, W. R., 1997, Thyroid hormone regulates postnatal expression of transient K+ channel isoforms in rat ventricle, J. Physiol. (London) 500:65–73.Google Scholar
  197. Shipsey, S. J., Bryant, S. M., and Hart, G., 1997, Effects of hypertrophy on regional action potential characteristics in the rat left ventricle: A cellular basis for T wave inversion, Circulation 96:2061–2068.PubMedCrossRefGoogle Scholar
  198. Swartz, K. J., and MacKinnon, R., 1995, An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron 15:941–949.PubMedCrossRefGoogle Scholar
  199. Tai, K.-K., and Goldstein, S. A. N., 1998, The conduction pore of a cardiac potassium channel. Nature 391:605–607.PubMedCrossRefGoogle Scholar
  200. Takimoto, K., and Levitan, E. S., 1994, Glucocorticoid induction of Kv1.5 K+ channel gene expression in ventricle of rat heart, Circ. Res. 75:1006–1013.PubMedCrossRefGoogle Scholar
  201. Takimoto, K., and Levitan, E. S., 1996, Altered K+ channel subunit composition following hormone induction of Kv1.5 gene expression. Biochemistry 35:14149–14156.PubMedCrossRefGoogle Scholar
  202. Takimoto, K., Gealy, R., and Levitan, E. S., 1995, Multiple protein kinases are required for basal Kv1.5 K+ channel expression in GH3 clonal pituitary cells, Biochim. Biophys. Acta 1265:22–28.PubMedCrossRefGoogle Scholar
  203. Takimoto, K., Li, D., Hershman, K. M., Li, P., Jackson, E. K., and Levitan, E. S., 1996, Decreased expression of Kv4.2 and novel Kv4.3 K+ channel subunit mRNAs in ventricles of renovascular hypertensive rats, Circ. Res. 81:533–539.CrossRefGoogle Scholar
  204. Takumi, T., Ohkubo, H., and Nakinishi, S., 1988, Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242:1042–1045.PubMedCrossRefGoogle Scholar
  205. Takum, T., Moriyoshi, K., Aramori, I., Ishii, T., Oiki, S., Okada, Y., Ohkubo, H., Nakanishi, S., 1991, Alteration of channel activities and gating by mutations of slow ISK potassium channel. J. Biol. Chem. 266(33):22192–22198.Google Scholar
  206. Tamkun, M. M., Knoth, K. M., Walbridge, J. A., Kroemer, H., Roden, D. M., and Glover, D. M., 1991, Molecular cloning and characterization of two voltage-gated K+ channel cDNAs from human ventricle, FASEB J. 5:331–337.PubMedGoogle Scholar
  207. Ten Eick, R. E., Houser, J. R., and Bassett, A. L., 1989, Cardiac hypertrophy and altered cellular activity of the myocardium, in: Physiology and Pathophysiology of the Heart, 2nd. ed. (N. Speralakis, ed.), Martinus Nijhoff, Boston, pp. 573–594.CrossRefGoogle Scholar
  208. Ten Eick, R. E., Zhang, K., Harvey, R. D., and Bassett, A. L., 1993, Enhanced functional expression of transient outward current in hypertrophied feline myocytes, Cardiovasc. Drugs Ther. 7:611–619.PubMedCrossRefGoogle Scholar
  209. Thornhill, W. B., Wu, M. B., Jiang, X., Wu, X., Morgan, P. T., and Margiotta, J. F., 1996, Expression of Kv1.1 delayed rectifier potassium channels in L ec mutant Chinese hamster ovary cell lines reveals a role for sialidation in channel function, J. Biol. Chem. 271:19093–19098.PubMedCrossRefGoogle Scholar
  210. Timpe, L. C., Schwarz, T. L., Temple, B. L., Papazian, D. M., Jan, Y. N., and Jan, L. Y., 1988, Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature 331:143–145.PubMedCrossRefGoogle Scholar
  211. Tomita, F., Bassett, A. L., Myerburg, R. J., and Kimura, F., 1994, Diminished transient outward currents in rat hypertrophied ventricular myocytes, Circ. Res. 75:296–303.PubMedCrossRefGoogle Scholar
  212. Trimmer, J. S., 1991, Immunological identification and characterization of a delayed rectifier K+ channel polypeptide in rat brain, Proc. Natl. Acad. Sci., U.S.A. 88:10764–10768.PubMedCrossRefGoogle Scholar
  213. Trudeau, M. C., Warmke, J. W., Ganetzky, B., and Robertson, G. A., 1995, H-ERG, a human inward rectifier with structural and functional homology to voltage-gated K+ channels. Science 269:92–95.PubMedCrossRefGoogle Scholar
  214. Tseng, G. -N., and Hoffman, B. F., 1989, Two components of transient outward current in canine ventricular myocytes, Circ. Res. 64:633–647.PubMedCrossRefGoogle Scholar
  215. Tseng-Crank, J. C. L., Tseng, G. -N., Schwartz, A., and Tanouye, M. A., 1990, Molecular cloning and functional expression of a potassium channel cDNA isolated from a rat cardiac library, FEBS Lett. 268:63–68.PubMedCrossRefGoogle Scholar
  216. Van Wagoner, D. R., Kirian, M., and Lamorgese, M., 1996, Phenylephrine suppresses outward K+ currents in rat atrial myocytes. Am. J. Physiol. 271:H937–H946.PubMedGoogle Scholar
  217. Van Wagoner, D. R., Pond, A. L., McCarthy, P. M., Trimmer, J. S., and Nerbonne, J. M., 1997, Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation, Circ. Res. 80:772–781.PubMedCrossRefGoogle Scholar
  218. Varro, A., Nanasi, P. P., and Lathrop, D. A., 1993, Potassium currents in isolated human atrial and ventricular cardiocytes, Acta Physiol. Scand. 149:133–142.PubMedCrossRefGoogle Scholar
  219. Veldkamp, M. W., Van Ginneken, A. C. G., and Bouman, L. N., 1993, Single delayed rectifier channels in the membrane of rabbit ventricular myocytes, Circ. Res. 72:865–878.PubMedCrossRefGoogle Scholar
  220. Wahler, G. M., Dollinger, S. J., Smith, J. M., and Flemal, K. I., 1994, Time course of postnatal changes in rat heart action potential and transient outward current is different, Am. J. Physiol. 267:H1157–H1166.PubMedGoogle Scholar
  221. Walsh, K. B., Arena, J. P., Kwok, W. M., and Freeman, I., 1991, Delayed-rectifier potassium channel activity in isolated membrane patches of guinea pig ventricular myocytes, Am. J. Physiol. 260:H1390–H1393.PubMedGoogle Scholar
  222. Wang, H. S., Pan, Z., Shi, W., Brown, B. S., Wymore, R. S., Cohen, I. S., Dixon, J. E., and McKinnon, D., 1998, KCNQ2 and KCNQ3 potassium channel subunits: Molecular correlates of the M-channel, Science 282:1890–1893.PubMedCrossRefGoogle Scholar
  223. Wang, K. -W., Tai, K. -K., and Goldstein, S. A. N., 1996, MinK residues line a potassium channel pore, Neuron 16:571–577.PubMedCrossRefGoogle Scholar
  224. Wang, L., and Duff, H. J., 1996, Identification and characteristics of delayed rectifier K+ current in fetal mouse ventricular myocytes, Am. J. Physiol. 270:H2088–H2093.PubMedGoogle Scholar
  225. Wang, L., and Duff, H. J., 1997, Developmental changes in transient outward current in mouse ventricle, Circ. Res. 81:120–127.PubMedCrossRefGoogle Scholar
  226. Wang, L., Feng, Z. -P., Kondo, C. S., Sheldon, R. S., and Duff, H. J., 1996, Developmental changes in the delayed rectifier K+ channels in mouse heart, Circ. Res. 79:79–85.PubMedCrossRefGoogle Scholar
  227. Wang, Q., Curran, M. E., Splawski, I., Burn, T. C., Millholland, J. M., Vanray, T. J., Shen, J., Timothy, K. W., Vincent, G. M., Dejager, T., Schwartz, P. J., Toubin, J. A., Moss, A. J., Atkinson, D. L., Landes, G. M., Connors, T. D., and Keating, M. T., 1996, Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias, Nat. Genet. 12:17–23.PubMedCrossRefGoogle Scholar
  228. Wang, Z., Fermini, B., and Nattel S., 1991, Repolarization differences between guinea pig atrial endocardium and epicardium, Am. J. Physiol. 260:H1501–H1506.PubMedGoogle Scholar
  229. Wang, Z., Fermini, B., and Nattel S., 1993a, Delayed rectifier outward current and repolarization in human atrial myocytes, Circ. Res. 73:276–285.PubMedCrossRefGoogle Scholar
  230. Wang, Z., Fermini, B., and Nattel, S., 1993b, Sustained depolarization-induced outward current in human atrial myocytes: Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents, Circ. Res. 73:1061–1076.PubMedCrossRefGoogle Scholar
  231. Wang, Z., Fermini, B., and Nattel, S., 1994, Rapid and slow components of delayed rectifier current in human atrial myocytes, Cardiovasc. Res. 28:1540–1546.PubMedCrossRefGoogle Scholar
  232. Wang, Z., Feng, J., Shi, H., Pond, A. L., Nerbonne, J. M., and Nattel, S., 1999, Potential molecular basis of different physiological properties of transient outward K+ current in rabbit and human atrial myocytes, Circ. Res. 84:551–561.PubMedCrossRefGoogle Scholar
  233. Warmke, J. W., and Ganetzky, B., 1994, A family of potassium channel genes related to eag in Drosophila and mammals, Proc. Natl. Acad. Sci. U.S.A. 91:3438–3442.PubMedCrossRefGoogle Scholar
  234. Warmke, J., Drysdale, R., and Ganetzky, B., 1991, A distinct potassium channel polypeptide encoded by the Drosophila eag locus, Science 252:1560–1564.PubMedCrossRefGoogle Scholar
  235. Wei, A., Covarrubias, M., Butler, A., Baker, K., Pak, M., and Salkoff, L., 1990, K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse, Science 248:599–603.PubMedCrossRefGoogle Scholar
  236. Wettwer, E., Amos, G., Gath, J., Zerkowski, H.-R., Reidemeister, J.-C., and Ravens, U., 1993, Transient outward current in human and rat ventricular myocytes, Cardiovasc. Res. 27:1662–1669.PubMedCrossRefGoogle Scholar
  237. Wettwer, E., Amos, G., Posival, H., and Ravens, U., 1994, Transient outward current in human and ventricular myocytes of subepicardial and subendocardial origin, Circ. Res. 75:473–482.PubMedCrossRefGoogle Scholar
  238. Wetzel, G. T., and Klitzner, T. S., 1996, Developmental cardiac electrophysiology: Recent advances in cellular physiology, Cardiovasc. Res. 31:E52–E60.PubMedGoogle Scholar
  239. Wible, B. A., Yang, Q., Kuryshev, Y. A., Accili, E. A., and Brown, A. M., 1998, Cloning and expression of a novel K+ channel regulatory protein, KChAP, J. Biol. Chem. 273:11745–11751.PubMedCrossRefGoogle Scholar
  240. Wickenden, A. D., Kaprielan, R., Parker, T. G., Jones, O. T., and Backx, P. H., 1997, Effects of development and thyroid hormone on K+ currents and K+ channel gene expression in rat ventricle, J. Physiol. (London) 504:271–286.CrossRefGoogle Scholar
  241. Wilde, A. A. M., and Veldkamp, M. W., 1997, Ion channels, the QT interval and arrhythmias, Pace 20:2048–2051.PubMedCrossRefGoogle Scholar
  242. Xu, X., and Best, P. M., 1991. Decreased transient outward K+ current in ventricular myocytes form acromegalic rats. Am. J. Physiol. 260:H935–H942.PubMedGoogle Scholar
  243. Xu, H., Dixon, J. E., Barry, D. M., Trimmer, J. S., Merlie, J. P., McKinnon, D., and Nerbonne, J. M., 1996, Developmental analysis reveals mismatches in the expression of K+ channel α-subunits and voltagegated K+ channel currents in rat ventricular myocytes, J. Gen. Physiol. 108:405–419.PubMedCrossRefGoogle Scholar
  244. Xu, H., Guo, W., and Nerbonne, J. M., 1999a, Four kinetically distinct depolarization activated K+ channel currents in adult mouse ventricular myocytes, J. Gen. Physiol. 113:661–678.PubMedCrossRefGoogle Scholar
  245. Xu, H., Li, H., Barry, D. M., and Nerbonne, J. M., 1999b, Elimination of the transient outward current and action potential prolongation in atrial myocytes expressing a dominant negative Kv4 alpha subunits, J. Physiol. (London), 519:11–21.CrossRefGoogle Scholar
  246. Yang, T., Kupershmidt, S., and Roden, D., 1995, Anti-minK antisense decreases the amplitude of the cardiac delayed rectifier K+ current, Circ. Res. 77:1246–1253.PubMedCrossRefGoogle Scholar
  247. Yeola, S. W., and Snyders, D. J., 1997, Electrophysiological and pharmacological correspondence between Kv4.2 current and rat cardiac transient outward current. Cardiovasc. Res. 33:540–547.PubMedCrossRefGoogle Scholar
  248. Yue, D. T., and Marban, E., 1988, A novel cardiac potassium channel that is active and conductive at depolarized potentials, Pflügers Arch. 413:127–133.PubMedCrossRefGoogle Scholar
  249. Yue, L., Feng, J., Li, G. R., and Nattel, S., 1996a, Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods, Am. J. Physiol. 270:H2157–H2168.PubMedGoogle Scholar
  250. Yue, L., Feng, J., Li, G. R., and Nattel, S., 1996b, Characterization of an ultrarapid delayed rectifier potassium channel involved in canine atrial repolarization, J. Physiol. (London) 496:647–662.Google Scholar
  251. Yue, L., Feng, J., Gaspo, R., Li, G. R., Wang, Z., and Nattel, S., 1997, Ionic remodelling underlying action potential changes in a canine model of atrial fibrillation, Circ. Res. 81:512–525.PubMedCrossRefGoogle Scholar
  252. Zhou, Z., Gong, Q., Ye, B., Fan, Z., Makielski, J., Robertson, G. A., and January, C. T., 1998, Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature, Biophys. J. 74:230–241.PubMedCrossRefGoogle Scholar
  253. Zygmunt, A. C., 1994, Intracellular calcium activates a chloride current in canine ventricular myocytes, Am. J. Physiol. 267:H1984–H1995.PubMedGoogle Scholar
  254. Zygmunt, A. C., and Gibbons, W. R., 1991, Calcium-activated chloride current in rabbit ventricular myocytes, Circ. Res. 68:424–437.PubMedCrossRefGoogle Scholar
  255. Zygmunt, A. C., and Gibbons, W. R., 1992, Properties of the calcium-activated chloride current in heart, J. Gen. Physiol. 99:391–414.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jeanne M. Nerbonne
    • 1
  1. 1.Department of Molecular Biology and PharmacologyWashington University Medical SchoolSt. LouisUSA

Personalised recommendations