Classification of Plant Lectins in Families Of Structurally and Evolutionary Related Proteins

  • Willy J. Peumans
  • J. M. van Damme
  • Annick Barre
  • Pierre Rougé
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 491)


The majority of plant lectins can be classified in seven families of structurally and lutionary related proteins. Within a given lectin family most but not necessarily all mbers are built up of protomers with a similar primary structure and overall 3-D fold. The rall structure of the native lectins is not only determined by the structure of the protomers depends also on the degree of oligomerization and in some cases on the post-nslational processing of the lectin precursors. In general, lectin families are fairly homogeneous for what concerns the overall cificity of the individuallectins, which illustrates that the 3-D structure of the binding site been conserved during evolution. In the case of the jacalin-related lectins the occurrence a mannose-and galactose-binding subfamily can be explained by the fact that a post-nslational cleavage of the protomers (of the galactose-binding subfamily) yields a slightly red binding site. Unlike the other families, the legume lectins display a wide range of cificites, which is clearly reflected in the occurrence of sugar-binding sites with a erent 3-D structure.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Damme, E.J.M., Peumans, W.J., Pusztai, A., and Bardocz, S. (1998) Handbook of Plant Lectins: Properties and Biomedical Applications. John Wiley & Sons, Chichester, UK.Google Scholar
  2. 2.
    Van Damme, E.J.M., Peumans, W.J., Barre, A., and Rougé, P. (1998) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plt. Sci., 17: 575–692.CrossRefGoogle Scholar
  3. 3.
    Peumans, W.J., and Van Damme, E.J.M. (1995) The role of lectins in plant defense. Histochem. J., 27: 253–271.PubMedCrossRefGoogle Scholar
  4. 4.
    Van Damme, E.J.M., Barre, A., Rougé, P., Van Leuven, F., and Peumans, W.J. (1996) Isolation and molecular cloning of a novel type 2 ribosome-inactivating protein with an inactive B chain from elderberry (Sambucus nigra) bark. J. Biol. Chem., 272: 8353–8360.Google Scholar
  5. 5.
    Barbieri, L., Batelli, G.B., and Stirpe, F. (1993) Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta, 1154: 237–282.Google Scholar
  6. 6.
    Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, U., and Vad, K. (1993) Plant chitinases. Plant J., 3: 31–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Bird, G.W.G. (1954) Observations on the interactions of the erythrocytes of various species with certain seed agglutinins. Br. J. Exp. Pathol., 35: 252.PubMedGoogle Scholar
  8. 8.
    Koeppe S.J., and Rupnov, J.H. (1988) Purification and characterization of a lectin from the seeds of amaranth (Amaranthus cruentus). J. Food Sc., 53: 1412–1417.CrossRefGoogle Scholar
  9. 9.
    Zenteno, E., and Ochoa, J.-L. (1988) Purification of a lectin from Amaranthus leucocarpus by affinity chromatography. Phytochem., 27: 313–317.CrossRefGoogle Scholar
  10. 10.
    Transue, T.R., Smith, A.K., Mo, H., Goldstein, I.J., and Saper, M.A. (1997) Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus lectin. Nature Struct. Biol., 10: 779–783.Google Scholar
  11. 11.
    Rinderle, S.J., Goldstein, I.J., Matta, K.L., and Ratcliffe, R.M. (1989) Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or cryptic T)-antigen. J. Biol. Chem., 264: 16123–16131.PubMedGoogle Scholar
  12. 12.
    Raina, A., and Data, A. (1992) Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proc. Natl. Acad. Sci. USA, 89: 11774–11778.PubMedCrossRefGoogle Scholar
  13. 13.
    Hossaini, A. (1968) Hemolytic and hemagglutinating activities of 222 plants. Vox Sang., 15: 410–417.PubMedCrossRefGoogle Scholar
  14. 14.
    Sabnis, D.D., and Hart, J.W. (1978) The isolation and some properties of a lectin (haemagglutinin) from Cucurbita phloem exudate. Planta, 142: 97–101.CrossRefGoogle Scholar
  15. 15.
    Allen, A.K. (1979) A lectin from the exudate of the fruit of the vegetable marrow (Cucurbita pepo) that has a specificity for β-1,4-linked N-acetylglucosamine oligosaccharides. Biochem. J., 183: 133–137.Google Scholar
  16. 16.
    Read, S.M., and Northcote, D.H. (1983) Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Eur. J. Biochem., 134: 561–569.PubMedCrossRefGoogle Scholar
  17. 17.
    Bostwick, D.E., Dannehofer, J.M., Skaggs, M.I., Lister, R.M., Larkins, B.A., and Thompson, G.A. (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell, 4: 1539–1548.PubMedGoogle Scholar
  18. 18.
    Anantharam V., Patanjali, S.R., Swamy, M.J., Sanadi, A.R., Goldstein, I.J., and Surolia, A. (1986) Isolation, macromolecular properties, and combining site of a chito-oligosaccharidespecific lectin from the exudate of ridge gourd (Luffa acutangula). J. Biol. Chem., 261: 14621–14627.PubMedGoogle Scholar
  19. 19.
    Wang, M.-B., Boulter, D., and Gatehouse, J.A. (1994) Characterization and sequencing of cDNA clone encoding the phloem protein PP2 of Cucurbita pepo. Plant Mol. Biol., 24: 159–170.PubMedCrossRefGoogle Scholar
  20. 20.
    Waljuno, K., Scholma, R. A., Beintema, J., Mariono, A., and Hahn, A. M. (1975) Amino acid sequence of hevein. Proc. Int. Rubber Conf., Kuala Lumpur, 2: 518–531.Google Scholar
  21. 21.
    Kocourek, J. (1986) Historical background. In The Lectins, Properties, Functions, and Applications in Biology and Medicine (Liener, I.E., Sharon, N. and Goldstein, I.J., eds.), pp 132 Academic Press, Orlando, USA.Google Scholar
  22. 22.
    Aub, J.C., Tieslau, C., and Lankester, A. (1963) Reactions of normal and tumor cell surfaces to enzymes. I. Wheat-germ lipase and associated mucopolysaccharides. Proc. Natl. Acad. Sci. USA, 50: 613–619.CrossRefGoogle Scholar
  23. 23.
    Burger, M.M., and Goldberg, A.R. (1967) Identification of a tumor-specific determinant on neoplastic cell surfaces. Proc. Natl. Acad. Sci. USA, 57: 359–366.PubMedCrossRefGoogle Scholar
  24. 24.
    Nagata, Y., and Burger, M.M. (1972) Wheat germ agglutinin. Isolation and crystallization. J. Biol. Chem., 247: 2248–2250.PubMedGoogle Scholar
  25. 25.
    LeVine, D., Kaplan, M.J., and Greenaway, P.J. (1972) The purification and characterization of wheat-germ agglutinin. Biochem. J., 129: 847–856.PubMedGoogle Scholar
  26. 26.
    Wright, C.S. (1977) The crystal structure of wheat germ agglutinin at 2.2 Å resolution. J. Mol. Biol., 111: 439–457.PubMedCrossRefGoogle Scholar
  27. 27.
    Raikhel, N.V., and Wilkins, T.A. (1987) Isolation and characterization of a cDNA clone encoding wheat germ agglutinin. Proc. Natl. Acad. Sci. USA, 84: 6745–6749.PubMedCrossRefGoogle Scholar
  28. 28.
    Van Parijs, J., Broekaert, W.F., Goldstein, I.J., and Peumans, W.J. (1991) Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta, 183: 258–262.CrossRefGoogle Scholar
  29. 29.
    Linthorst, H.J.M. (1991) Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci., 10: 123–150.CrossRefGoogle Scholar
  30. 30.
    Broekaert, W.F., Marien, W., Terras, F.R.G., De Bolle, M.F.C., Proost, P., Van Damme, J., Dillen, L., Claeys, M., Rees, S.B., Vanderleyden, J., and Cammue, B.P.A. (1992) Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry, 31: 4308–4314.PubMedCrossRefGoogle Scholar
  31. 31.
    Beintema, J.J., and Peumans, W.J. (1992) The primary structure of stinging nettle (Urtica dioica) agglutinin: a two-domain member of the hevein family. FEBS Lett., 299: 131–134.PubMedCrossRefGoogle Scholar
  32. 32.
    Peumans, W.J., Verhaert, P., Miller, U., and Van Damme, E.J.M. (1996) Isolation and partial characterization of a small chitin-binding lectin from mistletoe (Viscum album). FEBS Lett., 396: 261–265.PubMedCrossRefGoogle Scholar
  33. 33.
    Yamaguchi, K.I., Mori, A., and Funatsu, G. (1996) Amino acid sequence and some properties of lectin-D from the roots of pokeweed (Phytolacca americana). Biosci. Biotechnol. Biochem., 60: 1380–1382.Google Scholar
  34. 34.
    Yamaguchi, K.I., Mori, A., and Funatsu, G. (1995) The complete amino acid sequence of lectin-C from the roots of pokeweed (Phytolacca americana). Biosci. Biotechnol. Biochem., 59: 1384–1385.Google Scholar
  35. 35.
    Yamaguchi, K.I., Yurino, N., Kino, M., Ishiguro, M., and Funatsu, G. (1997) The amino acid sequence of mitogenic lectin-B from the roots of pokeweed (Phytolacca americana). Biosci. Biotechnol. Biochem., 61: 690–698.Google Scholar
  36. 36.
    Kieliszewski, M.J., Showalter, A.M., and Leykam, J.F. (1994) Potato lectin: a modular protein sharing sequence similarities with the extensin family, the hevein lectin family, and snake venom disintegrins (platelet aggregation inhibitors). Plant J., 5: 849–861.PubMedCrossRefGoogle Scholar
  37. 37.
    Allen, A.K., Bolwell, G.P., Brown, D.S., Sidebottom, C., and Slabas, A.R. (1996) Potato lectin: a three-domain glycoprotein with novel hydroxyproline-containing sequences and sequence similarities to wheat-germ agglutinin. Int. J. Biochem. Cell Biol., 28: 1285–1291.PubMedCrossRefGoogle Scholar
  38. 38.
    Beintema, J.J. (1994) Structural features of plant chitinases and chitin-binding proteins. FEBS Lett., 350: 159–163.PubMedCrossRefGoogle Scholar
  39. 39.
    Andersen, N.H., Cao, B., Rodriguez-Romero, A., and Arreguin, B. (1993) Hevein: NMR assignment and assessment of solution-state folding for the agglutinin-toxin motif. Biochemistry, 32: 1407–1422.PubMedCrossRefGoogle Scholar
  40. 40.
    Asensio, J.L., Cañada, F.J., Bruix, M., Rodriguez-Romero, A., and Jimenez-Barbero, J. (1995) The interaction of hevein with N-acetylglucosamine-containing oligosaccharides. Solution structure of hevein complexed to chitobiose. Eur. J. Biochem., 230: 621–633.PubMedCrossRefGoogle Scholar
  41. 41.
    Martins, J.C., Maes, D., Loris, R., Pepermans, H.A.M., Wyns, L., Willem, R., and Verheyden, P. (1996) 1H NMR study of the solution structure of Ac-AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus. J. Mol. Biol., 258: 322–333.PubMedCrossRefGoogle Scholar
  42. 42.
    Goldstein, I.J., Hughes, R.C., Monsigny, M., Osawa, T., and Sharon, N. (1980) What should be called a lectin? Nature, 285: 66.CrossRefGoogle Scholar
  43. 43.
    Jones, J. M., Cawley, L.P., and Teresa, G.W. (1967) Hemagglutinins (lectins) extracted from Maclura pomifera. Vox Sang., 12: 211–214.CrossRefGoogle Scholar
  44. 44.
    Bausch, J.N., and Poretz, R.D. (1977) Purification and properties of the hemagglutinin from Maclura pomífera seeds. Biochemistry, 16: 5790–5794.PubMedCrossRefGoogle Scholar
  45. 45.
    Moreira, R.A., and Ainouz, I.L. (1981) Lectins from seeds of jack fruit (Artocarpus integrifolia L.): Isolation and purification of two isolectins from the albumin fraction. Bio. Plant (Praha), 23: 186–192.CrossRefGoogle Scholar
  46. 46.
    Sarkar, M., Wu, A.M., and Kabat, E.A. (1981) Immunochemical studies on the carbohydrate specificity of Madura pomifera lectin. Arch. Biochem. Biophys., 209: 204–218.Google Scholar
  47. 47.
    Sastry, M.V.K., Banerjee, P., Patanjali, S.R., Swamy, M.J., Swarnalatha, G.V., and Surolia, A. (1986) Analysis of the saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (β-D-Gal(1,3)D-Ga1NAc). J. Biol. Chem., 261: 11726–11733.PubMedGoogle Scholar
  48. 48.
    Roque-Bareira, M.C., and Campos-Neto, A. (1985) Jacalin: an IgA-binding lectin. J. Immunol., 134: 1740–1743.Google Scholar
  49. 49.
    Kabir, S., and Daar, A.S. (1994) The composition and properties of jacalin, a lectin of diverse applications obtained from the jackfruit (Artocarpus heterophyllus)seeds. Immunol. Invest., 23: 167–188.Google Scholar
  50. 50.
    Czapla, T.H., and Lang, B.A. (1990) Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm (Coleoptera:Chrysomelidae). J. Econ. Entomol., 83: 2480–2485.Google Scholar
  51. 51.
    Young, N.M., Johnston, R.A.Z., and Watson, D.C. (1991) The amino acid sequences of jacalin and the Maclura pomífera agglutinin. FEBS Lett., 282: 382–384.PubMedCrossRefGoogle Scholar
  52. 52.
    Yang, H., and Czapla, T.H. (1993) Isolation and characterization of cDNA clones encoding jacalin isolectins. J. Biol. Chem., 268: 5905–5910.PubMedGoogle Scholar
  53. 53.
    Sankaranarayanan, R., Sekar, K., Banerjee, R., Sharma, V., Surolia, A., and Vijayan, M. (1996) A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a (β-prism fold. Nature Struct. Biol., 3: 596–603.Google Scholar
  54. 54.
    Van Damme, E.J.M., Barre, A., Verhaert, P., Rougé, P., and Peumans, W.J. (1996) Molecular cloning of the mitogenic mannose/maltose-specific rhizome lectin from Calystegia sepium. FEBS Lett., 397: 352–356.PubMedCrossRefGoogle Scholar
  55. 55.
    Van Damme, E.J.M., Barre, A., Mazard, A.-M., Verhaert, P., Horman, A., Debray, H., Rougé, P., and Peumans, W.J., (1999) Characterization and molecular cloning of the lectin from Helianthus tuberosus. Eur. J. Biochem., 199: 135–142.CrossRefGoogle Scholar
  56. 56.
    Rosa, J.C., De Oliveira, P.S.L., Garratt, R., Beltramini, L., Resing, K., Roque-Barreira, M.-C., and Greene, L.J. (1999) KM+, a mannose-binding lectin from Artocarpus integrifolia: amino acid sequence, predicted tertiary structure, carbohydrate recognition, and analysis of the β-prism fold. Protein Sci., 8: 13–24PubMedCrossRefGoogle Scholar
  57. 57.
    Peumans, W.J., Winter, H.C., Berner, V., Van Leuven, F., Goldstein, I.J., Truffa-Bachi, P., and, Van Damme, E.J.M. (1997) Isolation of a novel plant lectin with an unusual specificity from Calystegia sepium. Glycoconjugate J., 14: 259–265.CrossRefGoogle Scholar
  58. 58.
    Landsteiner, K., and Raubitschek, H. (1907) Beobachtungen über Hämolyse und Hämagglutination. Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. Abt., 1: Orig., 45: 660–667.Google Scholar
  59. 59.
    Summer, J.B., and Howell, S.F. (1936) The identification of the hemagglutinin of the Jack bean with concanavalin A. J. Bacteriol., 32: 227–237.Google Scholar
  60. 60.
    Renkonen, K.O. (1948) Studies on hemagglutinins present in seeds of some representatives of Leguminoseae. Ann. Med. Exp. Biol. Fenn., 26: 66–72.Google Scholar
  61. 61.
    Boyd, W.C., and Reguera, R.M. (1949) Studies on haemagglutinins present in seeds of some representatives of the family Leguminoseae. J. Immunol., 62: 333–339.PubMedGoogle Scholar
  62. 62.
    Nowell, P.C. (1960) Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res., 20: 462–466.PubMedGoogle Scholar
  63. 63.
    Edelman, G.M., Cunningham, B.A., Reeke, G.N.Jr., Becker, J.W., Waxdal, M.J., and Wang, J.L. (1972) The covalent and three-dimensional structure of concanavalin A. Proc. Natl. Acad. Sci. U.S.A., 69: 2580–2584.CrossRefGoogle Scholar
  64. 64.
    Hardman, K.D., and Ainsworth, C.F. (1972) Structure of concanavalin A at 2.4 A resolution. Biochemistry, 11: 4910–4919.PubMedCrossRefGoogle Scholar
  65. 65.
    Vodkin, L.O., Rhodes, P.R., and Goldberg, R.B. (1983) A lectin gene insertion has the structural features of a transposable element. Cell, 34: 1023–1031.PubMedCrossRefGoogle Scholar
  66. 66.
    Sturm, A., and Chrispeels, M.J. (1986) The high mannose oligosaccharide of phytohemagglutinin is attached to Asn12 and the modified oligosaccharide to Asn60. Plant Physiol., 81: 320–322.PubMedCrossRefGoogle Scholar
  67. 67.
    Sturm, A., Bergwerff, A.A., and Vliegenthart, F.G. (1992) 1H-NMR structural determination of the N-linked carbohydrate chains on glycopeptides obtained from the bean lectin phytohemagglutinin. Eur. J. Biochem., 204: 313–316.PubMedCrossRefGoogle Scholar
  68. 68.
    Feldsted, R.L., Egorin, M.J., Leavitt, R.D., and Bachur, N.R. (1977) Recombinations of subunits of Phaseolus vulgaris isolectins. J. Biol. Chem., 252: 2967–2971.Google Scholar
  69. 69.
    Van Driessche, E. (1988) Structure and function of Leguminosae lectins. In Advances in Lectin Research. Vol. 1, pp. 73–134, Franz, H., Ed., VEB Verlag Volk und Gesundheit, Berlin, Germany.Google Scholar
  70. 70.
    Carrington, D.M., Auffret, A., and Hanke, D.A. (1985) Polypeptide ligation occurs during post-translational modification of concanavalin A. Nature, 313: 64–67.PubMedCrossRefGoogle Scholar
  71. 71.
    Bowles, D.J., Marcus, S.E., Pappin, D.J.C., Findlay, J.B.C., Eliopoulos, E., Maycox, P. R., and Burgess, J. (1986) Posttranslational processing of concanavalin A precursors in jackbean cotyledons. J. Cell Biol., 102: 1284–1297.PubMedCrossRefGoogle Scholar
  72. 72.
    Agrawal, B.B.L., and Goldstein, I.J. (1968) Protein-carbohydrate interaction. VI. Isolation of concanavalin A by specific adsorption on cross-linked dextran gels. Biochim. Biophys. Acta, 147: 262–271.Google Scholar
  73. 73.
    Shaanan, B., Lis, H., and Sharon, N. (1991) Structure of a legume lectin with an ordered N-linked carbohydrate in complex with lactose. Science 254: 862–866.PubMedCrossRefGoogle Scholar
  74. 74.
    Banerjee, R., Mande, S. C., Ganesh, V., Das, K., Dhanaraj, V., Mahanta, S. K., Suguna, K., Surolia, A., and Vijayan, M. (1994) Crystal structure of peanut lectin, a protein with an unusual quaternary structure. Proc. Natl. Acad. Sci. U.S.A., 91: 227–231.PubMedCrossRefGoogle Scholar
  75. 75.
    Hamelryck, T.W., Dao, M.-H., Poortmans, F., Chrispeels, M.J., Wyns, L., and Loris, R. (1996) The crystallographic structure of phytohemagglutinin-L. J. Biol. Chem., 271: 20479–20485.PubMedCrossRefGoogle Scholar
  76. 76.
    Drickamer, K. (1995) Multiplicity of carbohydrate interactions. Nature Struct. Biol., 2: 437–439.PubMedCrossRefGoogle Scholar
  77. 77.
    Weis, W.I., and Drickamer, K. (1996) Structural basis of lectin-carbohydrate recognition. Annu. Rev. Biochem., 65: 441–473.CrossRefGoogle Scholar
  78. 78.
    Debray, H., Decout, D., Strecker, G., Spik, G., and Montreuil, J. (1981) Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur. J. Biochem., 117: 41–55.PubMedCrossRefGoogle Scholar
  79. 79.
    Kornfeld, K., Reitman, M.L., and Kornfeld, R. (1981) The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant. J. Biol. Chem., 256: 6633–6640.Google Scholar
  80. 80.
    Young, N.M., and Oomen, R.P. (1992) Analysis of sequence variation among legume lectins. A ring of hypervariable residues forms the perimeter of the carbohydrate-binding site. J. Mol. Biol., 228: 924–934.PubMedCrossRefGoogle Scholar
  81. 81.
    Sharma, V., and Surolia, A. (1997) Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity. J. Mol. Biol., 267: 433–445.PubMedCrossRefGoogle Scholar
  82. 82.
    Nachbar, M.S., and Oppenheim, J.D. (1980) Lectins in the United States diet: a survey of lectins in commonly consumed foods and a review of the literature. Am. J. Clin. Nutr., 33: 2338–2345.PubMedGoogle Scholar
  83. 83.
    Van Damme, E.J.M., Allen, A.K., and Peumans, W.J. (1987) Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett., 215: 140–144.CrossRefGoogle Scholar
  84. 84.
    Van Damme, E.J.M., Kaku, H., Perini, F., Goldstein, I.J., Peeters, B., Yagi, F., Decock, B., and Peumans, W.J. (1991) Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin. Eur. J. Biochem., 202: 23–30.PubMedCrossRefGoogle Scholar
  85. 85.
    Van Damme, E.J.M., Allen, A.K., and Peumans, W.J. (1988) Related mannose-specific lectins from different species of the family Amaryllidaceae. Physiol. Plant., 73: 52–57.CrossRefGoogle Scholar
  86. 86.
    Van Damme, E.J.M., Goldstein, I.J., and Peumans, W.J. (1991) A comparative study of related mannose-binding lectins from the Amaryllidaceae and Alliaceae. Phytochem., 30: 509–514.CrossRefGoogle Scholar
  87. 87.
    Van Damme, E.J.M., Smeets, K., Balzarini, J., Pusztai, A., Van Leuven, F., Goldstein, I. J., and Peumans, W.J. (1993) Cloning and characterization of the lectin cDNA clones from onion, shallot and leek. Plant Mol. Biol., 23: 365–376.Google Scholar
  88. 88.
    Van Damme, E.J.M., Balzarini, J., Smeets, K., Van Leuven, F., and Peumans, W.J. (1994) The monomeric and dimeric mannose-binding proteins from the Orchidaceae species Listera ovata and Epipactis helleborine: sequence homologies and differences in biological activities. Glycoconjugate J., 11: 321–332.CrossRefGoogle Scholar
  89. 89.
    Van Damme, E.J.M., Smeets, K., and Peumans, W.J. (1995) The mannose-binding monocot lectins and their genes. In Lectins: Biomedical Perspectives (Pusztai, A. and Bardocz, S., eds.), pp. 59–80. Taylor and Francis, London, UK.Google Scholar
  90. 90.
    Van Damme, E.J.M., Goossens, K., Smeets, K., Van Leuven, F., Verhaert, P., and Peumans, W.J. (1995) The major tuber storage protein of Araceae species is a lectin: Characterization and molecular cloning of the lectin from Arum maculatum L. Plant Physiol., 107: 1147–1158.PubMedCrossRefGoogle Scholar
  91. 91.
    Yagi, F., Hidaka, M., Minami, Y., and Tadera, K. (1996) A lectin from leaves of Neoregelia flandria recognizes D-glucose, D-mannose and N-acetylglucosamine, differing from the mannose-specific lectins from other monocotyledonous species. Plant Cell Physiol., 37: 1007–1012.PubMedCrossRefGoogle Scholar
  92. 92.
    Xu, Q., Liu, Y., Wang, X., Gu, H., and Chen, Z. (1998) Purification and characterization of a novel anti-fungal protein from Gastrodia elata. Plant Physiol. Biochem., 36: 899–905.Google Scholar
  93. 93.
    Van Damme, E.J.M., Smeets, K., Torrekens S., Van Leuven, F., and Peumans, W.J. (1993) The mannose-specific lectins from ramsons (Album ursinum L.) are encoded by three sets of genes. Eur. J. Biochem., 217: 123–129.PubMedCrossRefGoogle Scholar
  94. 94.
    Van Damme, E.J.M., Smeets, K., Torrekens, S., Van Leuven, F., Goldstein, I.J., and Peumans, W.J. (1992) The closely related homomeric and heterodimeric mannose-binding lectins from garlic are encoded by one-domain and two-domain lectin genes, respectively. Eur. J. Biochem., 206: 413–420.PubMedCrossRefGoogle Scholar
  95. 95.
    Van Damme, E.J.M., Briké, F., Winter, H. C., Van Leuven, F., Goldstein, I.J., and Peumans, W.J. (1996) Molecular cloning of two different mannose-binding lectins from tulip bulbs. Eur. J. Biochem., 236: 419–427.PubMedCrossRefGoogle Scholar
  96. 96.
    Wright, C.S., Kaku, H., and Goldstein, I.J. (1990) Crystallization and preliminary X-ray diffraction results of snowdrop (Galanthus nivalis) lectin. J. Biol. Chem., 265: 1676–1677.PubMedGoogle Scholar
  97. 97.
    Hester, G., Kaku, H., Goldstein, I.J., and Wright, C.S. (1995) Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nature Struct. Biol., 2: 472–479.Google Scholar
  98. 98.
    Barre, A., Van Damme, E.J.M., Peumans, W.J., and Rougé, P. (1996) Structure-function relationship of monocot mannose-binding lectins. Plant Physiol., 112: 1531–1540.PubMedCrossRefGoogle Scholar
  99. 99.
    Wright, C.S., and Hester, G. (1996) The 2.0 Å structure of a cross-linked complex between snowdrop lectin and a branched mannopentaose: evidence for two unique binding modes. Structure, 11: 1339–1352.CrossRefGoogle Scholar
  100. 100.
    Shibuya, N., Goldstein, I.J., Van Damme, E.J.M., and Peumans, W.J. (1988) Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J. Biol. Chem., 263: 728–734.PubMedGoogle Scholar
  101. 101.
    Kaku, H., Van Damme, E.J.M., Peumans, W.J., and Goldstein, I.J. (1990) Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins. Arch. Biochem. Biophys., 279: 298–304.Google Scholar
  102. 102.
    Saito, K., Komae, A., Kakuta, M., Van Damme, E.J.M., Peumans, W.J., Goldstein, I.J., and Misaki, A. (1993) The alpha-mannosyl-binding lectin from leaves of the orchid twayblade (Listera ovata). Application to separation of a-D-mannans from a-D-glucans. Eur. J. Biochem., 217: 677–681.PubMedCrossRefGoogle Scholar
  103. 103.
    Stillmark, H. (1888) Über Ricin ein giftiges Ferment aus den Samen von Ricinus communis L. und einige anderen Euphorbiaceen. Inaugural Dissertation Dorpat, Tartu.Google Scholar
  104. 104.
    Lin, J.-Y., Tserng, K.-Y., Chen, C.-C., Lin, L.-T., and Tung, T.-C. (1970) Abrin and ricin: new anti-tumour substances. Nature, 227: 292–293.PubMedCrossRefGoogle Scholar
  105. 105.
    Endo, Y., Mitsui, K., Motizuki, M., and Tsurugi, K. (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28S ribosomal RNA caused by the toxins. J. Biol. Chem., 262: 5908–5912.PubMedGoogle Scholar
  106. 106.
    Van Damme, E.J.M., Barre, A., Rougé, P., Van Leuven, F., and Peumans, W.J. (1996) The NeuAc (a-2,6)-Gal/GalNAc binding lectin from elderberry (Sambucus nigra) bark, a type 2 ribosome inactivating protein with an unusual specificity and structure. Eur. J. Biochem., 235: 128–137.PubMedCrossRefGoogle Scholar
  107. 107.
    Van Damme, E.J.M., Barre, A., Rougé, P., Van Leuven, F., and Peumans, W.J. (1996) Characterization and molecular cloning of SNAV (nigrin b), a GalNAc-specific type 2 ribosome-inactivating protein from the bark of elderberry (Sambucus nigra). Eur. J. Biochem., 237:505–513.PubMedCrossRefGoogle Scholar
  108. 108.
    Van Damme, E.J.M., Roy, S., Barre, A., Rougé, P., Van Leuven, F., and Peumans, W.J., (1997) The major elderberry (Sambucus nigra) fruit protein is a lectin derived from a truncated type 2 ribosome-inactivating protein. Plant J., 12: 1251–1260.PubMedCrossRefGoogle Scholar
  109. 109.
    Peumans, W.J., Roy, S., Barre, A., Rougé, P., Van Leuven, F., and Van Damme, E.J.M., (1998) Elderberry (Sambucus nigra) contains truncated Neu5Ac(α-2,6)Gal/Ga1NAc-binding type 2 ribosome-inactivating proteins. FEBS Lett., 425: 35–39.PubMedCrossRefGoogle Scholar
  110. 110.
    Rutenber, E., Katzin, B.J., Collins, E.J., Mlsna, D., Ready, M.P., and Robertus, J.D. (1991) Crystallographic refinement of Ricin to 2.5 Å. Proteins Struct. Funct. Genet.,10: 240–250.Google Scholar
  111. 111.
    Katzin, B.J., Collins, E.J., and Robertus, J.D. (1991) Structure of Ricin A-chain at 2.5 Å. Proteins Struct. Funct. Genet., 10: 251–259.Google Scholar
  112. 112.
    Rutenber, E., and Robertus, J.D. (1991) Structure of Ricin B-chain at 2.5 Å resolution. Proteins Struct. Funct. Genet., 10: 260–269.Google Scholar
  113. 113.
    Kim, Y., and Robertus, J.D. (1992) Analysis of several key active site residues of ricin A chain by mutagenesis and X-ray crystallography. Protein Engin., 5: 775–779.CrossRefGoogle Scholar
  114. 114.
    Chaddock, J.A., and Roberts, L.M. (1993) Mutagenesis and kinetic analysis of the active site G1u177 of ricin A-chain. Protein Engin., 6: 425–431.CrossRefGoogle Scholar
  115. 115.
    Murzin, A.G., Lesk, A.M., and Chothia, C. (1992) ß-trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukins-1ß and la and fibroblast growth factors. J. Mol. Biol., 223: 531–543.PubMedCrossRefGoogle Scholar
  116. 116.
    Tahirov, T.H., Lu. T.H., Liaw, Y.C., Chen, Y.L., and Lin, J.Y. (1995) Crystal structure of abrin-a at 2.14 Å. J. Mol. Biol., 25: 354–367.CrossRefGoogle Scholar
  117. 117.
    Yamasaki, N., Hatakeyama, T., and Funatsu, G. (1985) Ricin D-saccharide interaction as studied by ultraviolet difference spectroscopy. J. Biochem., 98: 1555–1560.PubMedGoogle Scholar
  118. 118.
    Hatakeyama, T., Yamasaki, N., and Funatsu, G. (1986) Identification of the tryptophan residue located at the low-affinity saccharide binding site of ricin D. J. Biochem., 100: 781–788.PubMedGoogle Scholar
  119. 119.
    Fu, T., Burbage, C., Tagge, E.P., Brothers, T., Willingham, M.C., and Frankel, A.E. (1996) Ricin toxin contains three lectin sites which contribute to its in vivo toxicity. Int. J. Immunopharmacol., 18: 685–692.PubMedCrossRefGoogle Scholar
  120. 120.
    Frankel, A.E., Burbage, C., Fu, T., Tagge, E., Chandler, J., and Willingham, M.C. (1996) Ricin toxin contains at least three galactose-binding sites located in B chain subdomains 1 alpha, 1 beta and 2 gamma. Biochemistry, 35: 14749–14756.PubMedCrossRefGoogle Scholar
  121. 121.
    Venkatesh, Y.P., and Lambert, J.M. (1997) Galactose-induced dimerization of blocked ricin at acidic pH: evidence for a third galactose-binding site in ricin B-chain. Glycobiology, 7: 329–335.PubMedCrossRefGoogle Scholar
  122. 122.
    Kraulis, P.J. (1991) Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst., 24: 946–950.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Willy J. Peumans
    • 1
  • J. M. van Damme
    • 1
  • Annick Barre
    • 2
  • Pierre Rougé
    • 2
  1. 1.Laboratory for Phytopathology and Plant ProtectionKatholieke Universiteit Leuven, Willem de Croylaan 42LeuvenBelgium
  2. 2.Institut de Pharmacologie et Biologie StructuraleUPR CNRS 9062Toulouse CedexFrance

Personalised recommendations