Tumor-Associated Carbohydrate Antigens Defining Tumor Malignancy: Basis for Development of Anti-Cancer Vaccines

  • Sen-itiroh Hakomori
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 491)


Tumors expressing a high level of certain types of tumor-associated carbohydrate antigens (T ACAs) exhibit greater metastasis and progression than those expressing low level of TACAs, as reflected in decreased patient survival rate. Well-documented examples of such TACAs are: (i) H/Ley/ILea in primary non-small cell lung carcinoma; (ii) sialyl-Lex(SLex) and sialyl-Lea (SLea) in various types of cancer; (iii) Tn and sialyl-Tn in colorectal, lung, breast, and many other cancers; (iv) GM2, GD2, and GD3 gangliosides in neuroectodermal tumors (melanoma and neuroblastoma); (v) globo-H in breast, ovarian, and prostate cancer; (vi) disialylgalactosylgloboside in renal cell carcinoma.

Some glycosylations and TACAs suppress invasiveness and metastatic potential. Welldocumented examples are: (i) blood group A antigen in primary lung carcinoma; (ii) bisecting β1 →4G1cNAc ofN-linked structure in melanoma and other cancers; (iii) galactosylgloboside (GaIGb4) in seminoma.

The biochemical mechanisms by which the above glycosylation changes promote or suppress tumor metastasis and invasion are mostly unknown. A few exceptional cases in which we have some knowledge are: (i) SLex and SLea function as E-selectin epitopes promoting tumor cell interaction with endothelial cells; (ii) some tumor cells interact through binding ofTACA to specific proteins other than selectin, or to specific carbohydrate expressed on endothelial cells or other target cells (carbohydrate-carbohydrate interaction); (iii) functional modification of adhesive receptor (integrin, cadherin, CD44) by glycosylation.

So far, a few successful cases of anti-cancer vaccine in clinical trials have been reported, employing T ACAs whose expression enhances malignancy. Examples are STn for suppression of breast cancer, GM2 and GD3 for melanoma, and globo-H for prostate cancer. Vaccine development can be extended using other T ACAs, with the following criteria for success: (i) the antigen is expressed highly on tumor cells; (ii) high antibody production depending on two factors: (a) clustering of antigen used in vaccine; (b) choice of appropriate carrier protein or lipid; (iii) high T cell response depending on choice of appropriate carrier protein or lipid; (iv) expression of the same antigen in normal epithelial tissues (e.g., renal, intestinal, colorectal) may not pose a major obstacle, i.e., these tissues are not damaged during immune response.

Idiotypic anti-carbohydrate antibodies that mimic the surface profile of carbohydrate antigens, when administered to patients, elicit anti-carbohydrate antibody response, thus providing an effect similar to that of T ACAs for suppression of tumor progression. An extension of this idea is the use of peptide mimetics ofTACAs, based on phage display random peptide library. Although examples are so far highly limited, use of such “mimotopes” as immunogens may overcome the weak immunogenicity ofTACAs in general.


Keyhole Limpet Hemocyanin Primary Lung Carcinoma Anticancer Vaccine Dynamic Flow Condition Phage Display Random Peptide Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hakomori, S., Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolismCancer Res. 565309 (1996).PubMedGoogle Scholar
  2. 2.
    Hollstein, M., Rice, K., Greenblatt, M. S., Soussi, T., Fuchs, R., Sorlie, T., Hovig, E., Smith-Sorensen, B., Montesano, R., and Harris, C. C., Database of p53 gene somatic mutations in human tumors and cell linesNucleic Acid Res. 223551 (1994).PubMedGoogle Scholar
  3. 3.
    Marx, J., New tumor suppressor may rival p53Science 264344 (1994).PubMedCrossRefGoogle Scholar
  4. 4.
    Ko, L. J., and Prives, C., p53: Puzzle and paradigmGenes & Development 101054 (1996).CrossRefGoogle Scholar
  5. 5.
    Levine, A. J., p53, the cellular gatekeeper for growth and divisionCell 88323 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    Kinzler, K. W., and Vogelstein, B., Landscaping the cancer terrainScience 2801036 (1998).PubMedCrossRefGoogle Scholar
  7. 7.
    Disis, M. L., and Cheever, M. A., HER-2/neu protein: A target for antigen-specific immunotherapy of human cancerAdv.Cancer Res. 71343 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    Kim, Y. S., Yuan, M., Itzkowitz, S. H., Sun, Q., Kaizu, T., Palekar, A., Trump, B. F., and Hakomori, S., Expression of Ley and extended Ley blood group-related antigens in human malignant, premalignant, and nonmalignant colonic tissuesCancer Res. 465985 (1986).PubMedGoogle Scholar
  9. 9.
    Itzkowitz, S. H., Yuan, M., Montgomery, C. K., Kjeldsen, T., Takahashi, H. K., Bigbee, W. L., and Kim, Y. S., Expression of Tn, sialosyl-Tn, and T antigens in human colon cancerCancer Res. 49197 (1989).PubMedGoogle Scholar
  10. 10.
    Muramatsu, T., Carbohydrate signals in metastasis and prognosis of human carcinomasGlycobiology3, 291 (1993).PubMedCrossRefGoogle Scholar
  11. 11.
    Oh-Uti, K., Polysaccharides and a glycidamin in gastric cancer tissueTohoku lExp.Med. 51297 (1949).CrossRefGoogle Scholar
  12. 12.
    Masamune, H., Kawasaki, H., Abe, S., Oyama, K., and Yamaguchi, Y., Molisch-positive mucopolysaccharides of gastric cancers as compared with the corresponding components of gastric mucosae. First report: Fractionation procedure of gastric cancer and gastric mucosaTohoku J.Exp.Med. 6881 (1958).PubMedCrossRefGoogle Scholar
  13. 13.
    Davidsohn, I., Kovarik, S., and Lee, C. L., A, B, and O substances in gastrointestinal carcinomaArch.Pathol. 81381 (1966).PubMedGoogle Scholar
  14. 14.
    Davidsohn, I., and Ni, L. Y., Loss of isoantigens A, B, and H in carcinoma of the lungAm.JPathol. 57307 (1969).Google Scholar
  15. 15.
    Davidsohn, I., Kovarik, S., and Ni, Y., Isoantigens A, B, and H in benign and malignant lesions of the cervixArch.Pathol.87, 306 (1969).PubMedGoogle Scholar
  16. 16.
    Dabelsteen, E., Roed-Petersen, B., and Pindborg, J. J., Loss of epithelial blood group antigens A and B in oral premalignant lesionsActa Pathol.Microbiol.Scand. 83292 (1975).Google Scholar
  17. 17.
    Orntoft, T. F., Wolf, H., Clausen, H., Dabelsteen, E., and Hakomori, S., Blood group ABH-related antigens in normal and malignant bladder urothelium: Possible structural basis for the deletion of type-2 chain ABH antigens in invasive carcinomasInt.J.Cancer 43774 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    Davidsohn, I., and Stejskal, R., Tissue antigens A, B and H in health and diseaseHaematologia 6177 (1972).PubMedGoogle Scholar
  19. 19.
    Lee, J. S., Ro, J. Y., Sahin, A. A., Hong, W. K., Brown, B. W., Mountain, C. F., and Hittelman, W. N., Expression of blood-group antigen A: A favorable prognostic factor in non-small-cell lung cancerN.Engl.J.Med. 3241084 (1991).PubMedCrossRefGoogle Scholar
  20. 20.
    Matsumoto, H., Muramatsu, H., Shimotakahara, T., Yanagi, M., Nishijima, H., Mitani, N., Baba, K., Muramatsu, T., and Shimazu, H., Correlation of expression of ABH blood group carbohydrate antigens with metastatic potential in human lung carcinomasCancer 7275 (1993).PubMedCrossRefGoogle Scholar
  21. 21.
    Ichikawa, D., Handa, K., Withers, D. A., and Hakomori, S., Histo-blood group A/BversusH status of human carcinoma cells as correlated with haptotactic cell motility: Approach withAandBgene transfectionCancer Res. 57 3092 (1997).PubMedGoogle Scholar
  22. 22.
    Ichikawa, D., Handa, K., and Hakomori, S., Histo-blood group A/B antigen deletion/ reductionvs.continuous expression in human tumor cells as correlated with their malignancyInt.J.Cancer 76 284 (1998).PubMedCrossRefGoogle Scholar
  23. 23.
    Iwamoto, S., Withers, D. A., Handa, K., and Hakomori, S., Deletion of A-antigen in human cancer cell lines is associated with reduced promoter activity of CBF/NF-Y binding region, and possibly with enhanced DNA methylation of A transferase promoterGlycoconj.J. in press(1999).Google Scholar
  24. 24.
    Fernandes, B., Sagman, U., Auger, M., Demetrio, M., and DennisJ.W.,131–6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasiaCancer Res. 51718 (1991).PubMedGoogle Scholar
  25. 25.
    Dennis, J. W., and Laferté, S., Oncodevelopmental expression of -G1cNAcβ1–6Mana1–6Manβ-6 branching of Asn-linked oligosaccharides in human breast carcinomasCancer Res. 49945 (1989).Google Scholar
  26. 26.
    Schachter, H., Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharidesBiochem.Cell Biol. 64163 (1985).CrossRefGoogle Scholar
  27. 27.
    Taniguchi, N., Yoshimura, M., Miyoshi, E., Ihara, Y., Nishikawa, A., and Fujii, S., Remodeling of cell surface glycoproteins by N-acetylglucosaminyltransferase III gene transfection: Modulation of metastatic potentials and down regulation of hepatitis B virus replicationsGlycobiology 6691 (1996).PubMedCrossRefGoogle Scholar
  28. 28.
    Yoshimura, M., Nishikawa, A., Ihara, Y., Taniguchi, S., and Taniguchi, N., Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfectionProc.Natl.Acad.Sci.USA 928754 (1995).PubMedCrossRefGoogle Scholar
  29. 29.
    Cummings, R. D., and Kornfeld, S., Characterization of structural determinants required for the high-affinity interaction of asparagine-linked oligosaccharides with immobilizedPhaseolus vulgarisleukoagglutinating and erythroagglutinating lectinsJ.Biol.Chem. 257 11230 (1982).PubMedGoogle Scholar
  30. 30.
    Seelentag, W. K. F., Li, W.-P., Schmitz, S.-F. H., Metzger, U., Aeberhard, P., Heitz, P. U., and Roth, J., Prognostic value of 131,6-branched oligosaccharides in human colorectal carcinomaCancer Res. 585559 (1998).PubMedGoogle Scholar
  31. 31.
    Ohyama, C., Orikasa, S., Kawamura, S., Satoh, M., Saito, S., Fukushi, Y., Levery, S. B., and Hakomori, S., Galactosylgloboside expression in seminoma: Inverse correlation with metastatic potentialCancer 761043 (1995).PubMedCrossRefGoogle Scholar
  32. 32.
    Akamatsu, S., Yazawa, S., Zenita, K., Matsumoto, H., Tachikawa, T., and Kannagi, R., Elevation of an a(1,3)fucosyltransferase activity correlated with apoptosis in the human colon adenocarcinoma cell line, HT-29Glycoconj.J. 131021 (1996).PubMedCrossRefGoogle Scholar
  33. 33.
    Hiraishi, K., Suzuki, K., Hakomori, S., and Adachi, M., Ley antigen expression is correlated with apoptosis (programmed cell death)Glycobiology3, 381 (1993).PubMedCrossRefGoogle Scholar
  34. 34.
    Thomsen, O., Ein vermehrungsfähiges Agens als Veränderer des isoagglutinatorischen Verhaltens der roten Blutkörperchen, eine bisher unbekannte Quelle der FehlbestimmungenZ.Immunit forsch. 5285 (1927).Google Scholar
  35. 35.
    Friedenreich, V., Untersuchungen über das von O. Thomsen beschriebene vermehrungsfähige Agens als Veränderer des isoagglutinatorischen Verhaltens der roten BlutkörperchenZ.Immunit.forsch. 5584 (1928).Google Scholar
  36. 36.
    Moreau, R., Dausset, J., Bernard, J., and Moullec, J., Anemie hemolytique acquise avec polyagglutinabilite des hematies par un nouveau factor present dans le serum humain normal (anti-Tn)Bull.Soc.Med.Hop.Paris73, 569 (1957).PubMedGoogle Scholar
  37. 37.
    Dausset, J., Moullec, J., and Bernard, J., Acquired hemolytic anemia with polyagglutinability of red blood cells due to a new factor present in normal human serum (anti-Tn)Blood 141079 (1959).PubMedGoogle Scholar
  38. 38.
    Dahr, W., Uhlenbruck, G., and Bird, G. W. G., Cryptic A-like receptor sites in human erythrocyte glycoproteins: Proposed nature of Tn-antigenVox Sang. 2729 (1974).PubMedCrossRefGoogle Scholar
  39. 39.
    Thomas, D. B., and Winzler, R. J., Structural studies on human erythrocyte glycoproteins: Alkali-labile oligosaccharidesJ.Biol.Chem. 2445943 (1969).PubMedGoogle Scholar
  40. 40.
    Springer, G. F., and Desai, P. R., Interaction of blood-group MN-like cancer antigen and human cytotoxinNaturwissenschaften 6138 (1974).PubMedCrossRefGoogle Scholar
  41. 41.
    Springer, G. F., and Desai, P. R., Human blood-group MN and precursor specificities: Structural and biological aspectsCarbohydr.Res. 40183 (1975).PubMedCrossRefGoogle Scholar
  42. 42.
    Springer, G. F., T and Tn, general carcinoma autoantigensScience 2241198 (1984).PubMedCrossRefGoogle Scholar
  43. 43.
    Hirohashi, S., Clausen, H., Yamada, T., Shimosato, Y., and Hakomori, S., Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and -81 expressed in cancer of blood group O or B individuals: Its identification as Tn antigenProc.Natl.Acad.Sci. USA 827039 (1985).PubMedCrossRefGoogle Scholar
  44. 44.
    Takahashi, H. K., Metoki, R., and Hakomori, S., Immunoglobulin G3 monoclonal antibody directed to Tn antigen (tumor-associated N-acetylgalactosaminyl epitope) that does not cross-react with blood group A antigenCancer Res. 484361 (1988).PubMedGoogle Scholar
  45. 45.
    Nakada, H., Numata, Y., Inoue, M., Tanaka, N., Kitagawa, H., Funakoshi, I., Fukui, S., and Yamashina, I., Elucidation of an essential structure recognized by an anti-GalNAca-Ser(Thr) monoclonal antibody (MLS 128)J.Biol.Chem. 26612402 (1991).PubMedGoogle Scholar
  46. 46.
    Brooks, S. A., and Leathem, A. J. C., Prediction of lymph node involvement in breast cancer by detection of altered glycosylation in the primary tumourLancet 33871 (1991).PubMedCrossRefGoogle Scholar
  47. 47.
    Galea, M. H., Ellis, I. O., Bell, J., Elston, C. W., Blarney, R. W., and Baum, M., Prediction of lymph node involvement in breast cancerLancet338, 392 (1991).CrossRefGoogle Scholar
  48. 48.
    Taylor, C. W., Anbazhagan, R., Jayatilake, H., Adams, A., Gusterson, B. A., Price, K., Gelber, R. D., and Goldhirsch, A.Helix pomatiain breast cancerLancet 338580 (1991).PubMedCrossRefGoogle Scholar
  49. 49.
    Hirao, T., Sakamoto, Y., Kamada, M., Hamada, S., and Aono, T., Tn antigen, a marker of potential for metastasis of uterine cervix cancer cellsCancer 72154 (1993).PubMedCrossRefGoogle Scholar
  50. 50.
    Sasaki, M., Yamato, T., and Nakanuma, Y., Expression of sialyl-Tn, Tn and T antigens in primary liver cancerPathol.Int. 49325 (1999).PubMedCrossRefGoogle Scholar
  51. 51.
    Nuti, M., Teramoto, Y. A., Mariani-Constantini, R., Hand, P. H., Colcher, D., and Schlom, J., A monoclonal antibody (B72.3) defines patterns of a novel tumor-associated antigen in human mammary carcinoma cell populationsJ.Inst.Cancer 29539 (1982).Google Scholar
  52. 52.
    Thor, A., Ohuchi, W., Szpak, C. A., Johnston, W. W., and Schlom, J., Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3Cancer Res. 463118 (1986).PubMedGoogle Scholar
  53. 53.
    Kjeldsen, T. B., Clausen, H., Hirohashi, S., Ogawa, T., Iijima, H., and Hakomori, S., Preparation and characterization of monoclonal antibodies directed to the tumor-associated 0-linked associated 0-linked sialosyl-2→6 a-N-acetylgalactosaminyl (sialosyl-Tn) epitopeCancer Res. 482214 (1988).PubMedGoogle Scholar
  54. 54.
    Kurosaka, A., Kitagawa, H., Fukui, S., Numata, Y., Nakada, H., Funakoshi, I., Kawasaki, T., Ogawa, T., Iijima, H., and Yamashina, I., A monoclonal antibody that recognizes a cluster of a disaccharide, NeuAca2–6GalNAc, in mucin-type glycoproteinsJ.Biol.Chem. 2638724 (1988).PubMedGoogle Scholar
  55. 55.
    Tettamanti, G., and Pigman, W., Purification and characterization of bovine and ovine submaxillary mucinsArch.Biochem.Biophys. 12441 (1968).PubMedCrossRefGoogle Scholar
  56. 56.
    Ogata, S., Koganty, R., Reddish, M., Longenecker, B. M., Chen, A., Perez, C., and Itzkowitz, S. H., Different modes of sialyl-Tn expression during malignant transformation of human colonic carcinomaGlycoconj.J.15, 29 (1998).PubMedCrossRefGoogle Scholar
  57. 57.
    Ogata, S., Ho, I., Chen, A., Dubois, D., Maklansky, J., Singhal, A. K., Hakomori, S., and Itzkowitz, S. H., Tumor-associated sialylated antigens are constitutively expressed in normal human colonic mucosaCancer Res.55, 1869 (1995).PubMedGoogle Scholar
  58. 58.
    Itzkowitz, S. H., Bloom, E. J., Kokal, W. A., Modin, G., Hakomori, S., and Kim, Y. S., Sialosyl-Tn: A novel mucin antigen associated with prognosis in colorectal cancer patientsCancer 661960 (1990).PubMedCrossRefGoogle Scholar
  59. 59.
    Kobayashi, H., Terao, T., and Kawashima, Y., Serum sialyl Tn as an independent predictor of poor prognosis in patients with epithelial ovariancancer J.Clin.Oncol. 1095 (1992).PubMedGoogle Scholar
  60. 60.
    Giuffre, G., Vitarelli, E., Tuccari, G., and Barresi, G., Immunohistochemical studyof Tn, sialosyl-Tn and T antigens in human meningiomasEur.J.Histochem. 42197 (1998).PubMedGoogle Scholar
  61. 61.
    Terashima, S., Takano, Y., Ohori, T., Kanno, T., Kimura, T., Motoki, R., and Kawaguchi, T., Sialyl-Tn antigen as a useful predictor of poor prognosis in patients with advanced stomach cancerSurg.Today 28682 (1998).PubMedCrossRefGoogle Scholar
  62. 62.
    Karlen, P., Young, E., Brostrom, O., Lofberg, R., Tribukait, B., Ost, K., Bodian, C., and Itzkowitz, S. H., Sialyl-Tn antigen as a marker of colon cancer risk in ulcerative colitis: Relation to dysplasia and DNA aneuploidyGastroenterology 1151395 (1998).PubMedCrossRefGoogle Scholar
  63. 63.
    Jensen, P., Clausen, O. P., and Bryne, M., Differences in sialyl-Tn antigen expression between keratoacanthomas and cutaneous squamous cell carcinomasJ.Cutan.Pathol. 26183 (1999).PubMedCrossRefGoogle Scholar
  64. 64.
    Sato, T., Nishimura, G., Nonomura, A., Miwa, K., and Miyazaki, I., Serological studies on CEA, CA19–9, STn, and SLX in colorectal cancerHepatogastroenterology 46914 (1999).PubMedGoogle Scholar
  65. 65.
    Lundin, M., Nordling, S., Roberts, P. J., Lundin, J., Carpelan-Holmstrom, M., von Boguslawsky, K., and Haglund, C., Sialyl Tn is a frequently expressed antigen in colorectal cancer: No correlation with patient prognosisOncology57, 70 (1999).PubMedCrossRefGoogle Scholar
  66. 66.
    Ikehara, Y., Kojima, N., Kurosawa, N., Kudo, T., Kono, M., Nishihara, S., Issiki, S., Morozumi, K., Itzkowitz, S., Tsuda, T., Nishimura, S., Tsuji, S., and Narimatsu, H., Cloning and expression of a human gene encoding an N-acetylgalactosamine-a2,6-sialyltransferase (ST6Ga1NAc I): A candidate for synthesis of cancer-associated sialyl-Tn antigensGlycobiology 91213 (1999).PubMedCrossRefGoogle Scholar
  67. 67.
    Lloyd, K. O., Kabat, E. A., Layug, E. J., and Gruezo, F., Immunochemical studies on blood groups: XXXIV. Structures of some oligosaccharides produced by alkaline degradation of blood group A, B, and H substancesBiochemistry 51489 (1966).PubMedCrossRefGoogle Scholar
  68. 68.
    Abe, K., McKibbin, J. M., and Hakomori, S., The monoclonal antibody directed to difucosylated type 2 chain (Fucal-2Galß1→4[Fucal-→3]GleNAc; Y determinant)J.Biol.Chem. 25811793 (1983).PubMedGoogle Scholar
  69. 69.
    Brown, A., Feizi, T., Gooi, H. C., Embleton, M. J., Picard, J. K., and Baldwin, R. W., A monoclonal antibody against human colonic adenoma recognizes difucosylated type 2 blood group chainsBiosci.Reports3, 163 (1983).CrossRefGoogle Scholar
  70. 70.
    Lloyd, K. O., Larson, G., Strömberg, N., Thurin, J., and Karlsson, K.-A., Mouse monoclonal antibody F-3 recognizes the difucosyl Type 2 blood group structureImmunogenetics 17537 (1983).PubMedCrossRefGoogle Scholar
  71. 71.
    Pastan, I., Lovelace, E. T., Gallo, M. G., Rutherford, A. V., MagnaniJ.L., and Willingham, M. C., Characterization of monoclonal antibodies B1 and B3 that react with mucinous adenocarcinomasCancer Res. 513781 (1991).PubMedGoogle Scholar
  72. 72.
    Scherf, U., Benhar, I., Webber, K. O., Pastan, I., and Brinkmann, U., Cytotoxic and antitumor activity of a recombinant tumor necrosis factor-B1(Fv) fusion protein on Ley antigen-expressing human cancer cellsClin.Cancer.Res. 21523 (1996).PubMedGoogle Scholar
  73. 73.
    Bera, T. K., and Pastan, I., Comparison of recombinant immunotoxins against LeY antigen expressing tumor cells: Influence of affinity, size, and stabilityBioconjug.Chem. 9736 (1998).PubMedCrossRefGoogle Scholar
  74. 74.
    Kaizu, T., Levery, S. B., Nudelman, E. D., Stenkamp, R. E., and Hakomori, S., Novel fucolipids of human adenocarcinoma: Monoclonal antibody specific for tifucosyl Ley (III3FucV3FucVI2FucnLc6), and a possible three-dimensional epitope structure, J.Biol. Chem.26111254 (1986).Google Scholar
  75. 75.
    Deshpande, P. P., and Danishefsky, S. J., Total synthesis of the potential anticancer vaccine KH-1 adenocarcinoma antigenNature 387164 (1997).PubMedCrossRefGoogle Scholar
  76. 76.
    Miyake, M., and Hakomori, S., A specific cell surface glycoconjugate controlling cell motility: Evidence by functional monoclonal antibodies that inhibit cell motility and tumor cell metastasisBiochemistry 303328 (1991).PubMedCrossRefGoogle Scholar
  77. 77.
    Miyake, M., Taki, T., Hitomi, S., and Hakomori, S., Correlation of expression of H/Ley/Leb antigens with survival in patients with carcinoma of the lungN.Eng1.J.Med. 32714 (1992).CrossRefGoogle Scholar
  78. 78.
    Goldstein, I. J., and Hayes, C. E., The lectins: Carbohydrate-binding proteins of plants and animalsAdv.Carbohydr.Chem.Biochem.35, 127 (1978).PubMedCrossRefGoogle Scholar
  79. 79.
    Shirahama, T., Ikoma, M., Muramatsu, T., Kayajima, T., Ohi, Y., Tsushima, T., Akebi, N., Ohmori, H., Hirao, Y., and Okajima, E., The binding site for fucose-binding proteinsof Lotus tetragonolobusis a prognostic marker for transitional cell carcinoma of the human urinary bladderCancer 72 1329 (1993).PubMedCrossRefGoogle Scholar
  80. 80.
    Dische, Z., Fucose and sialic acid in glycoproteins of the mucus of the digestive tractFed.Proc. 19904 (1960).PubMedGoogle Scholar
  81. 81.
    Koprowski, H., Herlyn, M., Steplewski, Z., and Sears, H. F., Specific antigen in serum of patients with colon carcinomaScience 21253 (1981).PubMedCrossRefGoogle Scholar
  82. 82.
    Magnani, J. L., Nilsson, B., Brockhaus, M., Zopf, D., Steplewski, Z., Koprowski, H., and Ginsburg, V., A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose IIJ.Biol.Chem. 25714365 (1982).PubMedGoogle Scholar
  83. 83.
    Hansson, G. C., and Zopf, D., Biosynthesis of the cancer-associated sialyl-Lea antigenIBiol.Chem. 2609388 (1985).Google Scholar
  84. 84.
    MagnaniJ.L., Steplewski, Z., Koprowski, H., and Ginsburg, V., Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19–9 in the sera of patients as mucinCancer Res. 435489 (1983).PubMedGoogle Scholar
  85. 85.
    Kannagi, R., Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancerGlycoconj.J. 14577 (1997).PubMedCrossRefGoogle Scholar
  86. 86.
    Fukushi, Y., Nudelman, E. D., Levery, S. B., Rauvala, H., and Hakomori, S., Novel fucolipids accumulating in human cancer: III. A hybridoma antibody (FH6) defining a human cancer-associated difucoganglioside (VI3NeuAcV3HI3Fuc2nLc6)J.Biol.Chem. 25910511 (1984).PubMedGoogle Scholar
  87. 87.
    Fukushima, K., Hirota, M., Terasaki, P. I., Wakisaka, A., Togashi, H., Chia, D., Suyama, N., Fukushi, Y., Nudelman, E. D., and Hakomori, S., Characterization of sialosylated Lewisx as a new tumor-associated antigenCancer Res. 445279 (1984).PubMedGoogle Scholar
  88. 88.
    Symington, F. W., Hedges, D. L., and Hakomori, S., Glycolipid antigens of human polymorphonuclear neutrophils and the inducible HL-60 myeloid leukemia lineJ.Immunol. 1342498 (1985).PubMedGoogle Scholar
  89. 89.
    Nakamori, S., Kameyama, M., Imaoka, S., Furukawa, H., Ishikawa, O., Sasaki, Y., Kabuto, T., Iwanaga, T., Matsushita, Y., and Irimura, T., Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: Clinicopathological and immunohistochemical studyCancer Res. 533632 (1993).PubMedGoogle Scholar
  90. 90.
    Nakagoe, T., Fukushima, K., Hirota, M., Kusano, H., Ayabe, H., Tomita, M., and Kamihira, S., Immunohistochemical expression of sialyl Lex antigen in relation to survival of patients with colorectal carcinomaCancer 722323 (1993).PubMedCrossRefGoogle Scholar
  91. 91.
    Lowe, J. B., Stoolman, L. M., Nair, R. P., Larsen, R. D., Berhend, T. L., and Marks, R. M., ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNACell 63475 (1990).PubMedCrossRefGoogle Scholar
  92. 92.
    Phillips, M. L., Nudelman, E. D., Gaeta, F. C. A., Perez, M., Singhal, A. K., Hakomori, S., and PaulsonJ.C., ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-LexScience 2501130 (1990).PubMedCrossRefGoogle Scholar
  93. 93.
    Hakomori, S., Possible new directions in cancer therapy based on aberrant expression of glycosphingolipids: Anti-adhesion and ortho-signaling therapyCancer Cells3, 461 (1991).PubMedGoogle Scholar
  94. 94.
    Berg, E. L., Robinson, M. K., Mansson, O., Butcher, E. C., and Magnani, J. L., A carbohydrate domain common to both sialyl Lea and sialyl Lex is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1, 1.Biol.Chem. 26614869 (1991).Google Scholar
  95. 95.
    Takada, A., Ohmori, K., Takahashi, N., Tsuyuoka, K., Yago, A., Zenita, K., Hasegawa, A., and Kannagi, R., Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl Lewis ABiochem.Biophys.Res.Commun. 179713 (1991).PubMedCrossRefGoogle Scholar
  96. 96.
    Takada, A., Ohmori, K., Yoneda, T., Tsuyuoka, K., Hasegawa, A., Kiso, M., and Kannagi, R., Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endotheliumCancer Res.53, 354 (1993).PubMedGoogle Scholar
  97. 97.
    Hakomori, S., Novel endothelial cell activation factor(s) released from activated platelets which induce E-selectin expression and tumor cell adhesion to endothelial cells: A preliminary noteBiochem. Biophys.Res.Commun. 2031605 (1994).PubMedCrossRefGoogle Scholar
  98. 98.
    Khatib, A.-M., Kontogiannea, M., Fallavollita, L., Jamison, B., Meterissian, S., and Brodt, P., Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cellsCancer Res. 591356 (1999).PubMedGoogle Scholar
  99. 99.
    Polley, M. J., Phillips, M. L., Wayner, E. A., Nudelman, E. D., Singhal, A. K., Hakomori, S., and Paulson, J. C., CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis xProc.Natl.Acad.Sci. USA 886224 (1991).PubMedCrossRefGoogle Scholar
  100. 100.
    Varki, A., Selectin ligandsProc.Natl.Acad.Sci. USA91, 7390 (1994).PubMedCrossRefGoogle Scholar
  101. 101.
    Lasky, L. A., Selectin-carbohydrate interactions and the initiation of the inflammatory responseAnnu.Rev.Biochem. 64113 (1995).PubMedCrossRefGoogle Scholar
  102. 102.
    Stroud, M. R., Handa, K., Salyan, M. E. K., Ito, K., Levery, S. B., Hakomori, S., Reinhold, B. B., and Reinhold, V. N., Monosialogangliosides of human myelogenous leukemia HL60 cells and normal human leukocytes. 1. Separation of E-selectin binding from nonbinding gangliosides, and absence of sialosyl-Lex having tetraosyl to octaosyl coreBiochemistry35, 758 (1996).PubMedCrossRefGoogle Scholar
  103. 103.
    Stroud, M. R., Handa, K., Salyan, M. E. K., Ito, K., Levery, S. B., Hakomori, S., Reinhold, B. B., and Reinhold, V. N., Monosialogangliosides of human myelogenous leukemia HL60 cells and normal human leukocytes. 2. Characterization of E-selectin binding fractions, and structural requirements for physiological binding to E-selectinBiochemistry35, 770 (1996).PubMedCrossRefGoogle Scholar
  104. 104.
    Handa, K., Stroud, M. R., and Hakomori, S., Sialosyl-fucosyl poly-LacNAc without the sialosyl-Lex epitope as the physiological myeloid cell ligand in E-selectin-dependent adhesion: Studies under static and dynamic flow conditionsBiochemistry 3612412 (1997).PubMedCrossRefGoogle Scholar
  105. 105.
    Handa, K., Withers, D. A., and Hakomori, S., The al->3 fucosylation at the penultimate GlcNAc catalyzed by fucosyltransferase VII is blocked by internally fucosylated residue in sialosyl long-chain poly-LacNAc: Enzymatic basis for expression of physiological E-selectin epitopeBiochem.Biophys. Res.Commun. 243199 (1998).PubMedCrossRefGoogle Scholar
  106. 106.
    Sako, D., Chang, X.-J., Barone, K. M., Vachino, G., White, H. M., Shaw, G., Veldman, G.M., Bean, K. M., Ahern, T. J., Furie, B., Cumming, D. A., and Larsen, G. R., Expression cloning of a functional glycoprotein ligand for P-selectinCell 751179 (1993).PubMedCrossRefGoogle Scholar
  107. 107.
    Handa, K., White, T., Ito, K., Fang, H., Wang, S., and Hakomori, S., P-selectin-dependent adhesion of human cancer cells: Requirement for co-expression of a “PSGL-1-like” core protein and the glycosylation process for sialosyl-Lex or sialosyl-LeaInt.lOncol.6, 773 (1995).Google Scholar
  108. 108.
    Nudelman, E. D., Levery, S. B., Stroud, M. R., Salyan, M. E. K., Abe, K., and Hakomori, S., A novel tumor-associated, developmentally regulated glycolipid antigen defined by monoclonal antibody ACFH-18J.Biol.Chem. 26313942 (1988).PubMedGoogle Scholar
  109. 109.
    Jämefelt, J., Rush, J., Li, Y.-T., and Laine, R. A., Erythroglycan, a high molecular weight glycopeptide with the repeating structure [galactosyl-(1-→4)-2-deoxy-2-acetamido-glucosyl(1→3)] comprising more than one-third of the protein-bound carbohydrate of human erythrocyte stromaJ.Biol.Chem. 2538006 (1978).Google Scholar
  110. 110.
    Levery, S. B., Nudelman, E. D., Salyan, M. E. K., and Hakomori, S., Novel tri-and tetrasialylpoly-N-acetyllactosaminyl gangliosides of human placenta: Structure determination of pentadeca-and eicosaglycosylceramides by methylation analysis, fast atom bombardment mass spectrometry, and 1H-NMR spectroscopyBiochemistry 287772 (1989).PubMedCrossRefGoogle Scholar
  111. 111.
    Nudelman, E. D., Mandel, U., Levery, S. B., Kaizu, T., and Hakomori, S., A series of disialogangliosides with binary 2–3 sialosyllactosamine structure, defined by monoclonal antibody NUH2, are oncodevelopmentally regulated antigensJ.Biol.Chem. 26418719 (1989).PubMedGoogle Scholar
  112. 112.
    Kannagi, R., Levery, S. B., and Hakomori, S., Lea-active heptaglycosylceramide, a hybrid of type 1 and type 2 chain, and the pattern of glycolipids with Lea, Leb, X (Lex) and Y (Ley) determinants in human blood cell membranes (ghosts): Evidence that type 2 chain can elongate repetitively but type 1 chaincannot J.Biol.Chem. 2606410 (1985).PubMedGoogle Scholar
  113. 113.
    Mártensson, S., Due, C., Páhlsson, P., Nilsson, B., Eriksson, H., Zopf, D., Olsson, L., and Lundblad, A., A carbohydrate epitope associated with human squamous lung cancerCancer Res. 482125 (1988).PubMedGoogle Scholar
  114. 114.
    Stroud, M. R., Levery, S. B., Mártensson, S., Salyan, M. E. K., Clausen, H., and Hakomori, S., Human tumor-associated Lea-Lex hybrid carbohydrate antigen IV3(Gal13l->3[Fuca1-->4]GlcNAc)III3FucnLc4 defined by monoclonal antibody 43–9F: Enzymatic synthesis, structural characterization, and comparative reactivity with various antibodiesBiochemistry33, 10672 (1994).PubMedCrossRefGoogle Scholar
  115. 115.
    Watanabe, M., Hirohashi, S., Shimosato, Y., Ino, Y., Yamada, T., Teshima, S., Sekine, T., and Abe, O., Carbohydrate antigen defined by a monoclonal antibody raised against a gastric cancer xenograftJpn.J.Cancer Res.(Gann) 7643 (1985).Google Scholar
  116. 116.
    Watanabe, M., Ohishi, T., Kuzuoka, M., Nudelman, E. D., Stroud, M. R., Kubota, T., Kodaira, S., Abe, O., Hirohashi, S., Shimosato, Y., and Hakomori, S.In vitroandin vivoantitumor effects of murine monoclonal antibody NCC-ST-421 reacting with dimeric Lea (Lea/Lea) epitopeCancer Res. 512199 (1991).PubMedGoogle Scholar
  117. 117.
    Stroud, M. R., Levery, S. B., Nudelman, E. D., Salyan, M. E. K., Towell, J. A., Roberts, C. E., Watanabe, M., and Hakomori, S., Extended type 1 chain glycosphingolipids: Dimeric Lea (III4V4Fuc2Lc6) as human tumor-associated antigenJ.Biol.Chem. 2668439 (1991).PubMedGoogle Scholar
  118. 118.
    Stroud, M. R., Levery, S. B., Salyan, M. E. K., Roberts, C. E., and Hakomori, S., Extended type-1 chain glycosphingolipid antigens: Isolation and characterization of trifucosyl-Leb antigen (III4V4VI2Fuc3Lc6)Eur.J.Biochem. 203577 (1992).PubMedCrossRefGoogle Scholar
  119. 119.
    Ito, H., Tashiro, K., Stroud, M. R., Orntoft, T. F., Meldgaard, P., Singhal, A. K., and Hakomori, S., Specificity and immunobiological properties of monoclonal antibody IMH2, established after immunization with Leb/Lea glycosphingolipid, a novel extended type 1 chain antigenCancer Res. 523739 (1992).PubMedGoogle Scholar
  120. 120.
    Watanabe, K., Powell, M. E., and Hakomori, S., Isolation and characterization of gangliosides with a new sialosyl linkage and core structure: Gangliosides of human erythrocyte membranes IIJ.Biol. Chem. 2548223 (1979).PubMedGoogle Scholar
  121. 121.
    Hakomori, S., Patterson, C. M., Nudelman, E. D., and Sekiguchi, K., A monoclonal antibody directed to N-acetylneuraminosyl a2→6galactosyl residue in gangliosides and glycoproteinsJ.Biol.Chem. 25811819 (1983).PubMedGoogle Scholar
  122. 122.
    Kannagi, R., Levery, S. B., Ishigami, F., Hakomori, S., Shevinsky, L. H., Knowles, B. B., and Solter, D., New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3J.Biol.Chem. 2588934 (1983).PubMedGoogle Scholar
  123. 123.
    Mènard, S., Tagliabue, E., Canevari, S., Fossati, G., and Colnaghi, M. I., Generation of monoclonal antibodies reacting with normal and cancer cells of human breastCancer Res.43, 1295 (1983).PubMedGoogle Scholar
  124. 124.
    Bremer, E. G., Levery, S. B., Sonnino, S., Ghidoni, R., Canevari, S., Kannagi, R., and Hakomori, S., Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBrl expressed in normal and neoplastic epithelial cells of human mammary glandJ.Biol.Chem. 25914773 (1984).PubMedGoogle Scholar
  125. 125.
    Perrone, F., Ménard, S., Canevari, S., Calabrese, M., Boracchi, P., Bufalino, R., Testori, S., Baldini, M., and Colnaghi, M. I., Prognostic significance of the CaMBr1 antigen on breast carcinoma: Relevance of the type of recognised glycoconjugateEur.J.Cancer 29A2113 (1993).PubMedCrossRefGoogle Scholar
  126. 126.
    Mariani-Costantini, R., Colnaghi, M. I., Leoni, F., Mènard, S., Cerasoli, S., and Rilke, F., Immunohistochemical reactivity of a monoclonal antibody prepared against human breast carcinomaVirchows Arch.A Pathol.Anat.Histopathol. 402389 (1984).PubMedCrossRefGoogle Scholar
  127. 127.
    Zhang, S., Zhang, H. S., Reuter, V. E., Slovin, S. F., Scher, H. I., and Livingston, P. O., Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancersClin.Cancer Res. 4295 (1998).PubMedGoogle Scholar
  128. 128.
    Saito, S., Levery, S. B., Salyan, M. E. K., Goldberg, R. I., and Hakomori, S., Common tetrasaccharide epitope NeuAca2→3Ga1ß1→3(NeuAca2→6)Ga1NAc, presented by different carrier glycosylceramides or 0-linked peptides, is recognized by different antibodies and ligands having distinct specificitiesJ.Biol.Chem. 2695644 (1994).PubMedGoogle Scholar
  129. 129.
    Satoh, M., Handa, K., Saito, S., Tokuyama, S., Ito, A., Miyao, N., Orikasa, S., and Hakomori, S., Disialosyl galactosylgloboside as an adhesion molecule expressed on renal cell carcinoma and its relationship to metastatic potentialCancer Res. 561932 (1996).PubMedGoogle Scholar
  130. 130.
    Saito, S., Orikasa, S., Satoh, M., Ohyama, C., Ito, A., and Takahashi, T., Expression of globo-series gangliosides in human renal cell carcinomaJpn.J. Cancer Res. (Gann) 88652 (1997).CrossRefGoogle Scholar
  131. 131.
    Nilsson, O., Mansson, J.-E., Brezicka, T., Holmgren, J., Lindholm, L., Sorenson, S., Yngvason, F., and Svennerholm, L., Fucosyl GM1 — a ganglioside associated with small cell lung carcinomasGlycoconj. J. 143 (1984).CrossRefGoogle Scholar
  132. 132.
    Nilsson, O., Brezicka, F. T., Holmgren, J., Sorenson, S., Svennerholm, L., Yngvason, F., and Lindholm, L., Detection of a ganglioside antigen associated with small cell lung carcinomas using monoclonal antibodies directed against fucosyl-GMICancer Res. 461403 (1986).PubMedGoogle Scholar
  133. 133.
    Vangsted, A. J., Clausen, H., Kjeldsen, T. B., White, T., Sweeney, B., Hakomori, S., Drivsholm, L., and Zeuthen, J., Immunochemical detection of a small cell lung cancer-associated ganglioside (FucGM1) in serumCancer Res. 512879 (1991).PubMedGoogle Scholar
  134. 134.
    Portoukalian, J., Zwingelstein, G., and Dore, J., Lipid composition of human malignant melanoma tumors at various levels of malignant growthEur.J.Biochem. 9419 (1979).PubMedCrossRefGoogle Scholar
  135. 135.
    Yeh, M.-Y., Hellström, I., Abe, K., Hakomori, S., and Hellström, K.-E., A cell-surface antigen which is present in the ganglioside fraction and shared by human melanomasIntl Cancer 29269 (1982).CrossRefGoogle Scholar
  136. 136.
    Nudelman, E. D., Hakomori, S., Kannagi, R., Levery, S. B., Yeh, M.-Y., Hellström, K.-E., and Hellström, I., Characterization of a human melanoma-associated ganglioside antigen defined by a monoclonal antibody, 4.2J.Biol.Chem. 25712752 (1982).PubMedGoogle Scholar
  137. 137.
    Pukel, C. S., Lloyd, K. O., Travassos, L. R., Dippold, W. G., Oettgen, H. F., and Old, L. J., GD3, a prominent ganglioside of human melanoma: Detection and characterization by mouse monoclonal antibodylExp.Med. 1551133 (1982).Google Scholar
  138. 138.
    Houghton, A. N., Mintzer, D., Cordon-Cardo, C., Welt, S. W., Fliegel, B., Vadhan, S., Carswell, E., Melamed, M. R., Oettgen, H. F., and Old, L. J., Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: A phase I trial in patients with malignant melanomaProc.Natl.Acad.Sci. USA 821242 (1985).PubMedCrossRefGoogle Scholar
  139. 139.
    Trie, R. F., Sze, L. L., and Saxton, R. E., Human antibody to OFA-1, a tumor antigen, producedin vitroby Epstein-Barr virus-transformed human 3-lymphoid cell linesProc.Natl.Acad.Sci. USA 79 5666 (1982).CrossRefGoogle Scholar
  140. 140.
    Tai, T., Paulson, J. C., Cahan, L. D., and Irie, R. F., Ganglioside GM2 as a human tumor antigen (OFA-I-1)Proc.Natl.Acad.Sci. USA 805392 (1983).PubMedCrossRefGoogle Scholar
  141. 141.
    Cahan, L. D., Irie, R. F., Singh, R., Cassidenti, A., and Paulson, J. C., Identification of human neuroectodermal tumor antigen (OFA-I-2) as ganglioside GD2Proc.Natl.Acad.Sci. USA 797629 (1982).PubMedCrossRefGoogle Scholar
  142. 142.
    Watanabe, T., Pukel, C. S., Takeyama, H., Lloyd, K. O., Shiku, H, Li, L. T. C., Trabassos, L. R., Oettgen, H. F., and Old, L. J., Human melanoma antigen AH is an autoantigen ganglioside related toGD2 J.Exp.Med. 1561884 (1982).PubMedCrossRefGoogle Scholar
  143. 143.
    Hirabayashi, Y., Hanaoka, A., Matsumoto, M., Matsubara, T., Tagawa, M., Wakabayashi, S., and Taniguchi, M., Syngeneic monoclonal antibody against melanoma antigen with interspecies cross-reactivity recognizes GM3, a prominent ganglioside of B16 melanomaJ.Biol.Chem. 26013328 (1985).PubMedGoogle Scholar
  144. 144.
    Nores, G. A., Dohi, T., Taniguchi, M., and Hakomori, S., Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: Requirements for tumor-associated antigen and immunogenJ.Immunol. 1393171 (1987).PubMedGoogle Scholar
  145. 145.
    Nakano, J., Muto, M., Shimizu, T., Hirota, T., Ichimiya, M., and Asagami, C., Ganglioside expression in melanomas from Japanese individuals: Unusual pattern in two patients with metastatic lesions of acral lentiginous melanomasPigment Cell Res., 10201 (1997).PubMedCrossRefGoogle Scholar
  146. 146.
    Cheung, N.-K., Lazarus, H., Miraldi, F. D., Abramowsky, C. R., Kallick, S., Saarinen, U. M., Spitzer, T., Strandjord, S. E., Coccia, P. F., and Berger, N. A., Ganglioside GD2 specific monoclonal antibody 3F8: A phase I study in patients with neuroblastoma and malignant melanomaJ.Clin.Oncol., 51430 (1987).PubMedGoogle Scholar
  147. 147.
    Saleh, M. N., Khazaeli, M. B., Wheeler, R. H., Dropcho, E., Liu, T., Urist, M., Miller, D. M., Lawson, S., Dixon, P., Russell, C. H., and LoBuglio, A. F., Phase I trial of the murine monoclonal anti-GD2 antibody 14G9a in metastatic melanomaCancer Res., 524342 (1992).PubMedGoogle Scholar
  148. 148.
    Zhang, H., Zhang, S., Cheung, N. K., Ragupathi, G., and Livingston, P. 0., Antibodies against GD2 ganglioside can eradicate syngeneic cancer micrometastasesCancer Res., 582844 (1998).PubMedGoogle Scholar
  149. 149.
    Young, W. W. J., and Hakomori, S., Therapy of mouse lymphoma with monoclonal antibodies to glycolipid: Selection of low antigenic variantsin vivo, Science, 211487 (1981).Google Scholar
  150. 150.
    Jones, P. C., Sze, L. L., Liu, P. Y., Morton, D. L., and Irie, R. F., Prolonged survival for melanoma patients with elevated IgM antibody to oncofetal antigenJ.Natl.Cancer Inst., 66249 (1981).PubMedGoogle Scholar
  151. 151.
    Livingston, P. O., Wong, G. Y., Adluri, S., Tao, Y., Padavan, M., Parente, R., Hanlon, C., Calves, M. J., Helling, F., and Ritter, G.Improved survival in stage III melanoma patients with GM2 antibodies: A randomized trial of adjuvant vaccination with GM2 gangliosideJ.Clin.Oncol., 121036 (1994).PubMedGoogle Scholar
  152. 152.
    Livingston, P. O., Approaches to augmenting the immunogenicity of melanoma gangliosides: From whole melanoma cells to ganglioside-KLH conjugate vaccinesImmunol.Rev., 145147 (1995).PubMedCrossRefGoogle Scholar
  153. 153.
    Livingston, P. 0., Carbohydrate vaccines that induce antibodies against cancer. 1. RationaleCancer Immunol.Immunother., 451 (1997).PubMedCrossRefGoogle Scholar
  154. 154.
    Young, W. W. J., MacDonald, E. M. S., Nowinski, R. C., and Hakomori, S., Production of monoclonal antibodies specific for distinct portions of the glycolipid asialo GM2 (gangliotriosylceramide)J.Exp. Med., 1501008 (1979).PubMedCrossRefGoogle Scholar
  155. 155.
    Livingston, P. O., Natoli, E. J., Calves, M. J., Stockert, E., Oettgen, H. F., and Old, L. J., Vaccines containing purified GM2 ganglioside elicit GM2 antibodies in melanoma patientsProc.Natl.Acad.Sci. USA, 842911 (1987).PubMedCrossRefGoogle Scholar
  156. 156.
    Kitamura, K., Livingston, P. O., Fortunato, S. R., Stockert, E., Helling, F., Ritter, G., Oettgen, H. F., and Old, L. J., Serological response patterns of melanoma patients immunized with a GM2 ganglioside conjugate vaccineProc.Natl.Acad.Sci. USA, 922805 (1995).PubMedCrossRefGoogle Scholar
  157. 157.
    Helling, F., Shang, A., Calves, M. J., Zhang, S., Ren, S., Yu, R. K., Oettgen, H. F., and Livingston, P. O., GD3 vaccines for melanoma: Superior immunogenicity of keyhole limpet hemocyanin conjugate vaccinesCancer Res., 54197 (1994).PubMedGoogle Scholar
  158. 158.
    Schulz, G., Cheresh, D. A., Varki, N. M., Yu, A., Staffileno, L. K., and Reisfeld, R. A., Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patientsCancer Res., 445914 (1984).PubMedGoogle Scholar
  159. 159.
    Pancook, J. D., Becker, J. C., Gillies, S. D., and Reisfeld, R. A., Eradication of established hepatic human neuroblastoma metastases in mice with severe combined immunodeficiency by antibody-targeted interleukin-2Cancer Immunol.Immunother., 4288 (1996).PubMedCrossRefGoogle Scholar
  160. 160.
    Becker, J. C., Varki, N., Gillies, S. D., Furukawa, K., and Reisfeld, R. A., An antibody-interleukin 2 fusion protein overcomes tumor heterogeneity by induction of a cellular immune responseProc.Natl. Acad.Sci.USA, 937826 (1996).PubMedCrossRefGoogle Scholar
  161. 161.
    Clausen, H., and Hakomori, S., ABH and related histo-blood group antigens: Immunochemical differences in carrier isotypes and their distributionVox Sang., 561 (1989).PubMedCrossRefGoogle Scholar
  162. 162.
    Slovin, S. F., Ragupathi, G., Adluri, S., Ungers, G., Terry, K., Kim, S., Spassova, M., Bornmann, W. G., Fazzari, M., Dantis, L., Olkiewicz, K., Lloyd, K. O., Livingston, P. 0., Danishefsky, S. J., and Scher, H. I., Carbohydrate vaccines in cancer: Immunogenicity of a fully synthetic globo H hexasaccharide conjugate in manProc.Natl.Acad.Sci. USA, 965710 (1999).PubMedCrossRefGoogle Scholar
  163. 163.
    Toyokuni, T., Dean, B., Cai, S., Boivin, D., Hakomori, S., and Singhal, A. K., Synthetic vaccines: Synthesis of a dimeric Tn antigen-lipopeptide conjugate that elicits immune responses against Tn-expressing glycoproteinsJ.Am.Chem.Soc., 116395 (1994).CrossRefGoogle Scholar
  164. 164.
    Toyokuni, T., Hakomori, S., and Singhal, A. K., Synthetic carbohydrate vaccines: Synthesis and immunogenicity of Tn antigen conjugatesBioorg.Med.Chem., 21119 (1994).PubMedCrossRefGoogle Scholar
  165. 165.
    Lo-Man, R., Bay, S., Vichier-Guerre, S., Deriaud, E., Cantacuzene, D., and Leclerc, C., A fully synthetic immunogen carrying a carcinoma-associated carbohydrate for active specific immunotherapyCancer Res., 591520 (1999).PubMedGoogle Scholar
  166. 166.
    Singhal, A. K., Fohn, M., and Hakomori, S., Induction of Tn (a-N-acetylgalactosamine-O-serine/ threonine) antigen-mediated cellular immune response for active immunotherapy in miceCancer Res., 511406 (1991).PubMedGoogle Scholar
  167. 167.
    MacLean, G. D., Reddish, M. A., Koganty, R. R., and Longenecker, B. M., Antibodies against mucin-associated sialyl-Tn epitopes correlate with survival of metastatic adenocarcinoma patients undergoing active specific immunotherapy with synthetic STn vaccineJ.Immunother., 1959 (1996).CrossRefGoogle Scholar
  168. 168.
    MacLean, G. D., Miles, D. W., Rubens, R. D., Reddish, M. A., and Longenecker, B. M., Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamideJ.Immunother., 19309 (1996).CrossRefGoogle Scholar
  169. 169.
    Ragupathi, G., Koganty, R. R., Qiu, D., Lloyd, K. O., and Livingston, P. O., A novel and efficient method for synthetic carbohydrate conjugate vaccine preparation: Synthesis of sialyl Tn-KLH conjugate using a 4-(4-N-maleimidomethyl) cyclohexane- 1 -carboxyl hydrazide (MMCCH) linker armGlycoconj.J., 15217 (1998).PubMedCrossRefGoogle Scholar
  170. 170.
    McCaffery, M., Yao, T.-J., Williams, L., Livingston, P. O., Houghton, A. N., and Chapman, P. B., Immunization of melanoma patients with BEC2 anti-idiotypic monoclonal antibody that mimics GD3 ganglioside: Enhanced immunogenicity when combined with adjuvantClin.Cancer Res., 2679 (1996).PubMedGoogle Scholar
  171. 171.
    Yao, T.-J., Meyers, M., Livingston, P. O., Houghton, A. N., and Chapman, P. B., Immunization of melanoma patients with BEC2-keyhole limpet hemocyanin plus BCG intradermally followed by intravenous booster immunizations with BEC2 to induce anti-GD3 ganglioside antibodiesClin.CancerRes., 577 (1999).Google Scholar
  172. 172.
    Yan, X., Evans, S. V., Kaminki, M. J., Gillies, S.D., Reisfeld, R. A., Houghton, A. N., and Chapman, P. B., Characterization of an Ig VH idiotope that results in specific homophilic binding and increased avidity for antigenJ.Immunol., 1571582 (1996).PubMedGoogle Scholar
  173. 173.
    Scott, J. K., and Smith, G. P., Searching for peptide ligands with an epitope libraryScience, 249386 (1990).PubMedCrossRefGoogle Scholar
  174. 174.
    Devlin, J. J., Panganiban, L. C., and Devlin, P. E., Random peptide libraries: A source of specific protein binding moleculesScience, 249404 (1990).PubMedCrossRefGoogle Scholar
  175. 175.
    Cwirla, S. E., Peters, E. A., Barrett, R. W., and Dower, W. J., Peptides on phage: A vast library of peptides for identifying ligandsProc.Natl.Acad.Sci. USA, 876378 (1990).PubMedCrossRefGoogle Scholar
  176. 176.
    Scott, J. K., Loganathan, D., Easley, R. B., Gong, X., and Goldstein, I. J., A family of concanavalin A-binding peptides from a hexapeptide epitope libraryProc.Natl.Acad.Sci.USA, 895398 (1992).PubMedCrossRefGoogle Scholar
  177. 177.
    Phalipon, A., Folgori, A., Arondel, J., Sgaramella, G., Fortugno, P., Cortese, R., Sansonetti, P. J., and Felici, F., Induction of anti-carbohydrate antibodies by phage library-selected peptide mimicsEur.J. Immunol., 272620 (1997).PubMedCrossRefGoogle Scholar
  178. 178.
    Pincus, S. H., Smith, M. J., Jennings, H. J., Burritt, J. B., and Glee, P. M., Peptides that mimic the group B streptococcal type III capsular polysaccharide antigenJ.Immunol., 160293 (1998).PubMedGoogle Scholar
  179. 179.
    Lou, Q., and Pastan, I., A Lewisy epitope mimicking peptide induces anti-Lewisy immune responses in rabbits andmice,1 Peptide Res.53, 252 (1999).CrossRefGoogle Scholar
  180. 180.
    Taki, T., Ishikawa, D., Hamasaki, H., and Handa, S., Preparation of peptides which mimic glycosphingolipids by using phage peptide library and their modulation on 13-galactosidase activityFEBSLett., 418219 (1997).CrossRefGoogle Scholar
  181. 181.
    Ishikawa, D., Kikkawa, H., Ogino, K., Hirabayashi, Y., Oku, N., and Taki, T., GD1a-replica peptides functionally mimic GD1a, an adhesion molecule of metastatic tumor cells, and suppress the tumor metastasisFEBSLett., 44120 (1998).CrossRefGoogle Scholar
  182. 182.
    Kieber-Emmons, T., Luo, P., Qiu, J., Chang, T. Y. O. I., Blaszczyk-Thurin, M., and Steplewski, Z., Vaccination with carbohydrate peptide mimotopes promotes anti-tumor responsesNature Biotechnol., 17660 (1999).CrossRefGoogle Scholar
  183. 183.
    Qiu, J., Luo, P., Wasmund, K., Steplewski, Z., and Kieber-Emmons, T., Towards the development of peptide mimotopes of carbohydrate antigens as cancer vaccinesHybridoma, 18103 (1999).PubMedCrossRefGoogle Scholar
  184. 184.
    Taki, T., Ishikawa, D., Ogura, M., Nakajima, M., and Handa, S., Ganglioside GD1a functions in the adhesion of metastatic tumor cells to endothelial cells of the target tissueCancer Res., 571882 (1997).PubMedGoogle Scholar
  185. 185.
    Kojima, N., and Hakomori, S., Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction, J.Biol.Chem.26617552 (1991).PubMedGoogle Scholar
  186. 186.
    Kojima, N., Shiota, M., Sadahira, Y., Handa, K., and Hakomori, S., Cell adhesion in a dynamic flow system as compared to static system: Glycosphingolipid-glycosphingolipid interaction in the dynamic system predominates over lectin-or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells1 Biol. Chem., 26717264 (1992).Google Scholar
  187. 187.
    Otsuji, E., Park, Y. S., Tashiro, K., Kojima, N., Toyokuni, T., and Hakomori, S., Inhibition of B16 melanoma metastasis by administration of GM3- or Gg3-liposomes: Blocking adhesion of melanoma cells to endothelial cells (anti-adhesion therapy) via inhibition of GM3-Gg3Cer or GM3-LacCer interactionInt.lOncol., 6319 (1995).Google Scholar
  188. 188.
    Hakomori, S., Role of gangliosides in tumor progression, inBiological function of gangliosides (Progress in Brain Research, Vol. 101)Svennerholm, L., Asbury, A. K., Reisfeld, R. A., Sandhoff, K., Suzuki, K., Tettamanti, G., and Toffano, G., Eds., Elsevier Science BV, Amsterdam, pp. 241 (1994).Google Scholar
  189. 189.
    Herrlich, P., Pals, S., and Ponta, H., CD44 in colon cancerEur.J.Cancer, 31A1110 (1995).PubMedCrossRefGoogle Scholar
  190. 190.
    Yamamura, S., Handa, K., and Hakomori, S., A close association of GM3 with c-Src and Rho in GM3-enriched microdomains at the B16 melanoma cell surface membrane: A preliminary noteBiochem. Biophys.Res.Commun., 236218 (1997).PubMedCrossRefGoogle Scholar
  191. 191.
    Iwabuchi, K., Yamamura, S., Prinetti, A., Handa, K., and Hakomori, S., GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16cells, J.Biol.Chem., 2739130 (1998).CrossRefGoogle Scholar
  192. 192.
    Yu, S., Withers, D. A., Yamamura, S., Handa, K., and Hakomori, S., Cell recognition and subsequent signal transduction through glycosphingolipid-glycosphingolipid interaction [Abstract]Glycoconj.l, 14 (Suppl)S53 (1997).Google Scholar
  193. 193.
    Yu, S., Withers, D. A., and Hakomori, S., Globoside-dependent adhesion of human embryonal carcinoma cells, based on carbohydrate-carbohydrate interaction, initiates signal transduction and induces enhanced activity of transcription factors AP1 and CREBJ.Biol.Chem., 2732517 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Sen-itiroh Hakomori
    • 1
  1. 1.Pacific Northwest Research Institute and University of WashingtonSeattleUSA

Personalised recommendations