Advertisement

STQL — A Spatio-Temporal Query Language

  • Martin Erwig
  • Markus Schneider
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 699)

Abstract

Integrating spatio-temporal data as abstract data types into already existing data models is a promising approach to creating spatio-temporal query languages. Based on a formal foundation presented elsewhere, we present the main aspects of an SQL-like, spatio-temporal query language, called STQL. As one of its essential features, STQL allows to query and to retrieve moving objects which describe continuous evolutions of spatial objects over time. We consider spatio-temporal operations that are particularly useful in formulating queries, such as the temporal lifting of spatial operations, the projection into space and time, selection, and aggregation. Another important class of queries is concerned with developments, which are changes of spatial relationships over time. Based on the notion of spatio-temporal predicates we provide a framework in STQL that allows a user to build more and more complex predicates starting with a small set of elementary ones. We also describe a visual notation to express developments.

Key words

Moving object spatio-temporal prediction development projection selection aggregation abstract data type 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariav, G. (1986). An Overview of TQuel. ACM Transactions on Database Systems, 11(4):499–527.CrossRefGoogle Scholar
  2. Böhlen, M. H., Jensen, C. S., and Skjellaug, B. (1998). Spatio-Temporal Database Support for Legacy Applications. In ACM Symp. on Applied Computing, pages 226–234.Google Scholar
  3. Cheng, T. S. and Gadia, S. K. (1994). A Pattern Matching Language for Spatio-Temporal Databases. In ACM Conf. on Information and Knowledge Management, pages 288–295.Google Scholar
  4. Clementini, E., Felice, P., and Oosterom, P. (1993). A Small Set of Formal Topological Relationships Suitable for End-User Interaction. In 3rd Int. Symp.on Advances in Spatial Databases, LNCS 692, pages 277–295.CrossRefGoogle Scholar
  5. Clifford, J. and Croker, A. (1993). The Historical Relational Data Model (HRDM) Revisited, pages 6–27. In Tansel, A. U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and Snodgrass, R., editors (1993). Temporal Databases: Theory, Design, and Implementation. The Benjamin/Cummings Publishing Company.Google Scholar
  6. Clifford, J., Croker, A., and Tuzhilin, A. (1993). On the Completeness of Query Languages for Grouped and Ungrouped Historical Data Models, pages 496–533. In Tansel, A. U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and Snodgrass, R., editors (1993). Temporal Databases: Theory, Design, and Implementation. The Benjamin/Cummings Publishing Company.Google Scholar
  7. Egenhofer, M. J. (1994). Spatial SQL: A Query and Presentation Language. IEEE Transactions on Knowledge and Data Engineering, 6(l):86–95.CrossRefGoogle Scholar
  8. Egenhofer, M. J. and Al-Taha, K. K. (1992). Reasoning about Gradual Changes of Topological Relationships. In Int. Conf GIS — From Space to Territory: Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, LNCS 639, pages 196–219.CrossRefGoogle Scholar
  9. Egenhofer, M. J. and Franzosa, R. D. (1991). Point-Set Topological Spatial Relations. Int. Journal of Geographical Information Systems, 5(2): 161–174.CrossRefGoogle Scholar
  10. Egenhofer, M. J. and Herring, J. (1990). A Mathematical Framework for the Definition of Topological Relationships. In 4th Int. Symp. on Spatial Data Handling, pages 803–813.Google Scholar
  11. Erwig, M. and Güting, R. H. (1994). Explicit Graphs in a Functional Model for Spatial Databases. IEEE Transactions on Knowledge and Data Engineering, 5(6):787–804.CrossRefGoogle Scholar
  12. Erwig, M., Güting, R. H., Schneider, M., and Vazirgiannis, M. (1998a). Abstract and Discrete Modeling of Spatio-Temporal Data Types. In 6th ACM Symp. on Geographic Information Systems, pages 131–136.Google Scholar
  13. Erwig, M., Güting, R. H., Schneider, M., and Vazirgiannis, M. (1999). Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases. Geolnformatica, 3(3):269–296.CrossRefGoogle Scholar
  14. Erwig, M. and Meyer, B. (1995). Heterogeneous Visual Languages — Integrating Visual and Textual Programming. In 11th IEEE Symp. on Visual Languages, pages 318–325.CrossRefGoogle Scholar
  15. Erwig, M. and Schneider, M. (1999a). Developments in Spatio-Temporal Query Languages. In IEEE Int. Workshop on Spatio-Temporal Data Models and Languages, pages 441–449.Google Scholar
  16. Erwig, M. and Schneider, M. (1999b). Visual Specifications of Spatio-Temporal Developments. In 15th IEEE Symp. on Visual Languages, pages 187–188.Google Scholar
  17. Erwig, M. and Schneider, M. (2000). Query-By-Trace: Visual Predicate Specification in Spatio-Temporal Databases. In Arisawa, H. and Catarci, T., editors, Advances in Visual Information Management — Visual Database Systems, pages 199–218. Kluwer Academic Publishers, Boston, MA.Google Scholar
  18. Erwig, M. and Schneider, M. (2002). Spatio-Temporal Predicates. IEEE Transactions on Knowledge and Data Engineering. To appear.Google Scholar
  19. Erwig, M., Schneider, M., and Güting, R. H. (1998b). Temporal Objects for Spatio-Temporal Data Models and a Comparison of Their Representations. In Int. Workshop on Advances in Database Technologies, LNCS 1552, pages 454–465.Google Scholar
  20. Gadia, S. K. and Nair, S. S. (1993). Temporal Databases: A Prelude to Parametric Data, pages 28–66. In Tansel, A. U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and Snodgrass, R., editors (1993). Temporal Databases: Theory, Design, and Implementation. The Benjamin/Cummings Publishing Company.Google Scholar
  21. Grumbach, S., Rigaux, P., and Segoufin, L. (1998). Spatio-Temporal Data Handling with Constraints. In 6th ACM Int. Symp. on Advances in Geographic Information Systems, pages 106–111.Google Scholar
  22. Güting, R. H., Böhlen, M. H., Erwig, M., Jensen, C. S., Lorentzos, N. A., Schneider, M., and Vazirgiannis, M. (2000). A Foundation for Representing and Querying Moving Objects. ACM Transactions on Database Systems, 25(1): 1–42.CrossRefGoogle Scholar
  23. Güting, R. H. and Schneider, M. (1995). Realm-Based Spatial Data Types: The ROSE Algebra. VLDB Journal, 4(2): 100–143.CrossRefGoogle Scholar
  24. Motakis, I. and Zaniolo, C. (1995). Composite Temporal Events in Active Databases: A Formal Semantics. In Clifford, J. and Tuzhilin, A., editors, Recent Advances in Temporal Databases, pages 332–351. Springer Verlag.Google Scholar
  25. Segev, A. and Shoshani, A. (1993). Logical Modeling of Temporal Data. In Tansel, A. U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and Snodgrass, R., editors (1993). Temporal Databases: Theory, Design, and Implementation. The Benjamin/Cummings Publishing Company, pages 248–270.Google Scholar
  26. Snodgrass, R. (1993). A Temporally Oriented Data Model, pages 141–182. In Tansel, A. U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and Snodgrass, R., editors (1993). Temporal Databases: Theory, Design, and Implementation. The Benjamin/Cummings Publishing Company.Google Scholar
  27. Stonebraker, M. (1986). Inclusion of New Types in Relational Database Systems. In Int. Conf. on Data Engineering, pages 262–269.Google Scholar
  28. Stonebraker, M., Rubenstein, B., and Guttman, A. (1983). Application of Abstract Data Types and Abstract Indices to CAD Data Bases. In ACM/IEEE Conf. on Engineering Design Applications, pages 107–113.Google Scholar
  29. Tansel, A. U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and Snodgrass, R., editors (1993). Temporal Databases: Theory, Design, and Implementation. The Benjamin/Cummings Publishing Company.Google Scholar
  30. Worboys, M. F. (1994). A Unified Model for Spatial and Temporal Information. The Computer Journal, 37(l):25–34.Google Scholar
  31. Yeh, T. S. and Cambray, B. (1993). Time as a Geometric Dimension for Modeling the Evolution of Entities: A 3D Approach. In Int. Conf. on Integrating GIS and Environmental Modeling.Google Scholar
  32. Yeh, T. S. and Cambray, B. (1995). Modeling Highly Variable Spatio-Temporal Data. In 6th AustraliAsian Database Conf., pages 221–230.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Martin Erwig
    • 1
  • Markus Schneider
    • 2
  1. 1.Department of Computer ScienceOregon State UniversityUSA
  2. 2.Department of Computer and Information Science and EngineeringUniversity of FloridaUSA

Personalised recommendations