Neuro-Cognitive Models of Acquired Sociopathy and Developmental Psychopathy

  • R. James
  • R. Blair
Part of the Neurobiological Foundation of Aberrant Behaviors book series (NFAB, volume 5)


The goal of this chapter is to consider neuro-cognitive models of “acquired sociopathy” and developmental psychopathy. I will first provide definitions of these two clinical conditions. I will then detail the differences in the form of aggression—reactive and instrumental—that these two disorders present with. Following this, I will review what is known about the neural bases of these disorders on the basis of neuro-imaging studies. Then, two models of acquired sociopathy will be described: the somatic marker hypothesis and the social response reversal model. I will also consider whether either of these models could account for developmental psychopathy. Finally, I will consider a model of developmental psychopathy that has been extremely successful in accounting for much of the data on this disorder.


Conditioned Stimulus Orbitofrontal Cortex Reactive Aggression Antisocial Personality Disorder Somatic Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolphs, R., Tranel, D., Young, A.W., Calder, A.J., Phelps, E.A., Anderson, A.K., Lee, G.P., & Damasio, A.R. (1999). Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologic 37, 1111–1117.CrossRefGoogle Scholar
  2. Ambrogi Lorenzini, C.G., Baldi, E., Bucherelli, C., Sacchetti, B., & Tassoni, G. (1999). Neural topography and chronology of memory consolidation: A review of functional inactivation findings. Neurobiology of Learning and Memory, 71, 1–18.CrossRefPubMedGoogle Scholar
  3. American Psychiatric Association. (1980). Diagnostic and statistical manual of mental disorders (3rd ed., DSM-III). Washington, DC: American Psychiatric Association.Google Scholar
  4. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  5. Anderson, A.K., & Phelps, E.A. (1998). Intact recognition of vocal expressions of fear following bilateral lesions of the human amygdala. Neuroreport, 9, 3607–3616.CrossRefPubMedGoogle Scholar
  6. Anderson, S.W., Bechara, A., Damasio, H., Tranel, D., & Damasio, A.R. (1999). Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neuroscience, 2, 1032–1037.CrossRefPubMedGoogle Scholar
  7. Angrilli, A., Mauri, A., Palomba, D., Flor, H., Birhaumer, N., Sartori, G., & di Paola, F. (1996). Startle reflex and emotion modulation impairment after a right amygdala lesion. Brain, 119, 1991–2000.CrossRefPubMedGoogle Scholar
  8. Aniskiewicz, A.S. (1979). Autonomic components of vicarious conditioning and psychopathy. Journal of Clinical Psychology, 35, 60–67.CrossRefPubMedGoogle Scholar
  9. Arsenio, W.F., & Fleiss, K. (1996). Typical and behaviorally disruptive children’s understanding of the emotion consequences of socio-moral events. British Journal of Developmental Psychology, 14, 173–186.CrossRefGoogle Scholar
  10. Averill, J.R. (1982). Anger and aggression: An essay on emotion. New York: Springer-Verlag.CrossRefGoogle Scholar
  11. Bachevalier, J. (1994). Medial temporal lobe structures and autism: A review of clinical and experimental findings. Neuropsychologia, 32, 627–648.CrossRefPubMedGoogle Scholar
  12. Barratt, E.S., Stanford, M.S., Dowdy, L., Liebman, M.J., & Kent, T.A. (1999). Impulsive and premeditated aggression: a factor analysis of self-reported acts. Psychiatry Research, 86, 163–173.CrossRefPubMedGoogle Scholar
  13. Barratt, E.S., Stanford, M.S., Kent, T.A., & Felthous, A. (1997). Neuropsychological and cognitive psychophysiological substrates of impulsive aggression. Biological Psychiatry, 41, 1045–1061.CrossRefPubMedGoogle Scholar
  14. Bechara, A., Damasio, A.R., Damasio, H., & Anderson, S.W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.CrossRefPubMedGoogle Scholar
  15. Bechara, A., Damasio, H., & Damasio, A.R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.CrossRefPubMedGoogle Scholar
  16. Bechara, A., Damasio, H., Damasio, A.R., & Lee, G.P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19, 5473–5481.PubMedGoogle Scholar
  17. Bechara, A., Damasio, H., Tranel, D., & Damasio, A.R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.CrossRefPubMedGoogle Scholar
  18. Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain, 123, 2189–202.CrossRefPubMedGoogle Scholar
  19. Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A.R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269, 1115–1118.CrossRefPubMedGoogle Scholar
  20. Berkowitz, L. (1974). Some determinants of impulsive aggression: role of mediated associations with reinforcements for aggression. Psychological Review, 81, 165–176.CrossRefPubMedGoogle Scholar
  21. Berkowitz, L. (1993). Aggression: Its causes, consequences, and control. Philadelphia: Temple University Press.Google Scholar
  22. Berthoz, S., Armony, J., Blair, R.J.R., & Dolan, R. (submitted). Neural correlates of violation of social norms and embarrassment.Google Scholar
  23. Blair, R.J.R. (1995). A cognitive developmental approach to morality: Investigating the psychopath. Cognition, 57, 1–29.CrossRefPubMedGoogle Scholar
  24. Blair, R.J.R. (1997). Moral reasoning in the child with psychopathic tendencies. Personality and Individual Differences, 22, 731–739.CrossRefGoogle Scholar
  25. Blair, R.J.R. (1999). Responsiveness to distress cues in the child with psychopathic tendencies. Personality and Individual Differences, 27, 135–145.CrossRefGoogle Scholar
  26. Blair, R.J.R. (2001). Neuro-cognitive models of aggression, the Antisocial Personality Disorders and Psychopathy. Journal of Neurology, Neurosurgery & Psychiatry, 71, 1–4.CrossRefGoogle Scholar
  27. Blair, R.J.R. (in press). A neuro-cognitive model of the psychopathic individual. In T. Robbins, & M. Ron (Eds.), Disorders of brain and mind II. Cambridge: Cambridge University Press.Google Scholar
  28. Blair, R.J.R., & Cipolotti, L. (2000). Impaired social response reversal: A case of “acquired sociopathy”. Brain, 123, 1122–1141.CrossRefPubMedGoogle Scholar
  29. Blair, R.J.R., & Coles, M. (2000). Expression recognition and behavioral problems in early adolescence. Cognitive Development, 15, 421–434.CrossRefGoogle Scholar
  30. Blair, R.J.R., Colledge, E., Murray, L., & Mitchell, D. (2001). A selective impairment in the processing of sad and fearful expressions in boys with psychopathic tendencies. Journal of Abnormal Child Psychology, in press.Google Scholar
  31. Blair, R.J.R., & Curran, H.V. (1999). Selective impairment in the recognition of anger induced by diazepam. Psychopharmacology, 147, 335–338.CrossRefPubMedGoogle Scholar
  32. Blair, R.J.R., Jones, L., Clark, F., & Smith, M. (1995). Is the psychopath “morally insane”? Personality and Individual Differences, 19, 741–752.CrossRefGoogle Scholar
  33. Blair, R.J.R., Jones, L., Clark, F., & Smith, M. (1997). The psychopathic individual: A lack of responsiveness to distress cues? Psychophysiology, 34, 192–198.CrossRefPubMedGoogle Scholar
  34. Blair, R.J.R., Mitchell, D., & Colledge, E. (in press). Somatic markers and response reversal: Is there orbitofrontal cortex dysfunction in children with psychopathic tendencies? Journal of Abnormal Child Psychology.Google Scholar
  35. Blair, R.J.R., Mitchell, D.G.V., & Colledge, E. (submitted). Reduced sensitivity to other’s fearful expressions in psychopathic individuals.Google Scholar
  36. Blair, R.J.R., Morris, J.S., Frith, C.D., Perrett, D.I., & Dolan, R. (1999). Dissociable neural responses to facial expressions of sadness and anger. Brain, 122, 883–893.CrossRefPubMedGoogle Scholar
  37. Blair, R.J.R., Sellars, C., Strickland, I., Clark, F., Williams, A.O., Smith, M., & Jones, L. (1995). Emotion attributions in the psychopath. Personality and Individual Differences, 19, 431–437.CrossRefGoogle Scholar
  38. Blanchard, R.J., Blanchard, D.C., & Takahashi, L.K. (1977). Attack and defensive behavior in the albino rat. Animal Behavior, 25, 197–224.CrossRefGoogle Scholar
  39. Blumer, D., & Benson, D.F. (1975). Personality changes with frontal and temporal lobe lesions. In D.F. Benson, & D. Blumer (Eds.), Psychiatric aspects of neurological disease (pp. 151–170). New York: Grune & Stratton.Google Scholar
  40. Bond, A.J., Curran, H.V., Bruce, M., O’Sullivan, G., & Shine, P. (1995). Behavioral aggression in panic disorder after 8 weeks of treatment with alprazolam. Journal of Affective Disorders, 35, 117–123.CrossRefPubMedGoogle Scholar
  41. Borrill, J.A., Rosen, B.K., & Summerfield, A.B. (1987). The influence of alcohol on judgment of facial expressions of emotion. British Journal of Medical Psychology, 60, 71–77.PubMedGoogle Scholar
  42. Burgess, P.W., & Wood, R.L. (1990). Neuropsychology of behavior disorders following brain injury. In R.L. Wood (Ed.), Neurobehavioural sequelae of traumatic brain injury (pp. 110–133). London: Taylor & Francis.Google Scholar
  43. Camras, L.A. (1977). Facial expressions used by children in a conflict situation. Child Development, 48, 1431–1435.CrossRefPubMedGoogle Scholar
  44. Chaplin, T.C., Rice, M.E., & Harris, G.T. (1995). Salient victim suffering and the sexual responses of child molesters. Journal of Consulting and Clinical Psychology, 63, 249–255.CrossRefPubMedGoogle Scholar
  45. Christiansen, P., Toft, P., Larsson, H.B., Stubgaard, M., & Henriksen, O.(1993). The concentration of N-acetyl aspartate, creatine + phosphocreatine, and choline in different parts of the brain in adulthood and senium. Magnetic Resonance Imaging, 11, 799–806.CrossRefPubMedGoogle Scholar
  46. Cleckley, H. (1967). The mask of sanity (4th ed.). St Louis, MO: Mosby.Google Scholar
  47. Cornell, D.G., Warren, J., Hawk, G., Stafford, E., Oram, G., & Pine, D. (1996). Psychopathy in instrumental and reactive violent offenders. Journal of Consulting and Clinical Psychology, 64, 783–790.CrossRefPubMedGoogle Scholar
  48. Crick, N.R., & Dodge, K.A. (1996). Social information-processing mechanisms on reactive and proactive aggression. Child Development, 67, 993–1002.CrossRefPubMedGoogle Scholar
  49. Critchley, H.D., Simmons, A., Daly, E.M., Russell, A., van Amelsvoort, T., Robertson, D.M., Glover, A., & Murphy, D.G. (2000). Prefrontal and medial temporal correlates of repetitive violence to self and others. Biological Psychiatry, 47, 928–934.CrossRefPubMedGoogle Scholar
  50. Damasio, A.R. (1994). Descartes’ error: Emotion, rationality and the human brain. New York: Putnam (Grosset Books).Google Scholar
  51. Damasio, A.R., Tranel, D., & Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioral Brain Research, 41, 81–94.CrossRefGoogle Scholar
  52. Damasio, A.R., Tranel, D., & Damasio, H.C. (1991). Somatic markers and the guidance of behavior: Theory and preliminary testing. In H.S. Levin, H.M. Eisenberg, & A.L. Benton (Eds.), Frontal lobe function and dysfunction (pp. 217–229). New York: Oxford University Press.Google Scholar
  53. Davis, M. (2000). The role of the amygdala in conditioned and unconditioned fear and anxiety. In J.P. Aggleton (Ed.), The amygdala: A functional analysis (pp. 289-310). Oxford: Oxford University Press.Google Scholar
  54. de Waal, F.B. (1992). Coalitions as part of reciprocal relations in the Arnhem chimpanzee colony. In A.H. Harcourt, & F.B.M. de Waal (Eds.), Coalitions and alliances in humans and other animals (pp. 233–257). Oxford: Oxford University Press.Google Scholar
  55. Dias, R., Robbins, T.W., & Roberts, A.C. (1996). Dissociation in prefrontal cortex of affective and attentional shifts. Nature, 380, 69–72.CrossRefPubMedGoogle Scholar
  56. Dougherty, D.D., Shin, L.M., Alpert, N.M., Pitman, R.K., Orr, S.P., Lasko, M., Macklin, M.L., Fischman, A.J., & Rauch, S.L. (1999). Anger in healthy men: a PET study using script-driven imagery. Biological Psychiatry, 46, 466–472.CrossRefPubMedGoogle Scholar
  57. Eibl-Eibesfeldt, I. (1970). Ethology: The biology of behavior. New York: Holt, Rinehart and Winston.Google Scholar
  58. Ekman, P., & Friesen, W.V. (1976). Pictures of facial affect. Palo Alto: Consulting Psychologists Press.Google Scholar
  59. Everitt, B.J., Cardinal, R.N., Hall, J., Parkinson, J.A., & Robbins, T.W. (2000). Differential involvement of amygdala subsystems in appetitive conditioning and drug addiction. In J.P. Aggleton (Ed.), The Amygdala: A functional analysis (pp. 289–310). Oxford: Oxford University Press.Google Scholar
  60. Fine, C. (2000). Expectation violations and emotional learning. Unpublished doctoral dissertation, University College London, University of London, London.Google Scholar
  61. Fine, C., & Blair, R.J.R. (2000). Mini review: The cognitive and emotional effects of amygdala damage. Neurocase, 6, 435–450.CrossRefGoogle Scholar
  62. Fisher, L., & Blair, R.J.R. (1998). Cognitive impairment and its relationship to psychopathic tendencies in children with emotional and behavioral difficulties. Journal of Abnormal Child Psychology, 26, 511–519.CrossRefPubMedGoogle Scholar
  63. Fowles, D.C. (1988). Psychophysiology and psychopathy: A motivational approach. Psychophysiology, 25, 373–391.CrossRefPubMedGoogle Scholar
  64. Frick, P.J., & Hare, R.D. (in press). The psychopathy screening device. Toronto: Multi-Health Systems.Google Scholar
  65. Gallagher, M., McMahan, R.W., & Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. Journal of Neuroscience, 19, 6610–6614.PubMedGoogle Scholar
  66. Goyer, P.F., Andreason, P.J., Semple, W.E., Clayton, A.H., King, A.C., Compton-Toth, B.A., Schulz, S.C., & Cohen, R.M. (1994). Positron-emission tomography and personality disorders. Neuropsychopharmacology, 10, 21–28.PubMedGoogle Scholar
  67. Grafman, J., Schwab, K., Warden, D., Pridgen, B.S., & Brown, H.R. (1996). Frontal lobe injuries, violence, and aggression: A report of the Vietnam head injury study. Neurology, 46, 1231–1238.CrossRefPubMedGoogle Scholar
  68. Graves, R., Landis, T., & Goodglass, H. (1981). Laterality and sex differences for visual recognition of emotional and non-emotional words. Neuropsychologia, 19, 95–102.CrossRefPubMedGoogle Scholar
  69. Hare, R.D. (1965). Temporal gradient of fear arousal in psychopaths. Journal of Abnormal Psychology, 70, 442–445.CrossRefPubMedGoogle Scholar
  70. Hare, R.D. (1978). Electrodermal and cardiovascular correlates of psychopathy. In R.D. Hare, & D. Schalling (Eds.), Psychopathic behavior: Approaches to research (pp. 107–143). Chichester, England: Wiley.Google Scholar
  71. Hare, R.D. (1982). Psychopathy and physiological activity during anticipation of an aversive stimulus in a distraction paradigm. Psychophysiology, 19, 266–271.CrossRefPubMedGoogle Scholar
  72. Hare, R.D. (1991). The Hare psychopathy checklist-revised. Toronto, Ontario: Multi-Health Systems.Google Scholar
  73. Hare, R.D., Frazelle, J., & Cox, D.N. (1978). Psychopathy and physiological responses to threat of an aversive stimulus. Psychophysiology, 15, 165–172.CrossRefPubMedGoogle Scholar
  74. Hare, R.D., & Jutai, J.W. (1983). Criminal history of the male psychopath: Some preliminary data. In K.T. Van Dusen, & S.A. Mednick (Eds.), Prospective studies of crime and delinquency (pp. 225–236). Boston: Kluwer-Nijhoff.CrossRefGoogle Scholar
  75. Harpur, T.J., & Hare, R.D. (1994). Assessment of psychopathy as a function of age. Journal of Abnormal Psychology, 103, 604–609.CrossRefPubMedGoogle Scholar
  76. Hart, S.D., & Hare, R.D. (1996). Psychopathy and antisocial personality disorder. Current Opinion in Psychiatry, 9, 129–132.CrossRefGoogle Scholar
  77. Hatfield, T., Han, J.S., Conley, M., Gallagher, M., & Holland, P. (1996). Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. Journal of Neuroscience, 16, 5256–5265.PubMedGoogle Scholar
  78. Hecaen, H., & Albert, M.L. (1978). Human neuropsychology. New York: Wiley.Google Scholar
  79. Hornak, J., Rolls, E.T., & Wade, D. (1996). Face and voice expression identification in patients with emotional and behavioral changes following ventral frontal damage. Neuropsychologia, 34, 247–261.CrossRefPubMedGoogle Scholar
  80. House, T.H., & Milligan, W.L. (1976). Autonomic responses to modeled distress in prison psychopaths. Journal of Personality and Social Psychology, 34, 556–560.CrossRefPubMedGoogle Scholar
  81. Intrator, J., Hare, R.D., Stritzke, P., Brichtswein, K., Dorfman, D., Harpur, T.J., Bernstein, D., Handelsman, L., Scaefer, C., Keilp, J., Rosen, J., & Machac, J. (1997). A brain imaging (single photon emission computerized tomography) study of semantic and affective processing in psychopaths. Biological Psychiatry, 42, 96–103.CrossRefPubMedGoogle Scholar
  82. Kesler/West, M.L., Andersen, A.H., Smith, C.D., Avison, M.J., Davis, C.E., Kryscio, R.J., & Blonder, L.X. (2001). Neural substrates of facial emotion processing using fMRI. Cognitive Brain Research, 11, 213–226.CrossRefGoogle Scholar
  83. Killcross, S., Robbins, T.W., & Everitt, B.J. (1997). Different types of fear-conditioned behavior mediated by separate nuclei within amygdala. Nature, 388, 377–380.CrossRefPubMedGoogle Scholar
  84. Laakso, M.P., Vaurio, O., Koivisto, E., Savolainen, L., Eronen, M., Aronen, H.J., Hakola, P., Repo, E., Soininen, H., & Tiihonen, J. (2001). Psychopathy and the posterior hippocampus. Behavior Brain Research, 118, 187–193.CrossRefGoogle Scholar
  85. LaBar, K.S., LeDoux, J.E., Spencer, D.D., & Phelps, E.A. (1995). Impaired fear conditioning following unilateral temporal lobectomy in humans. Journal of Neuroscience, 15, 6846–6855.PubMedGoogle Scholar
  86. LaPierre, D., Braun, C.M.J., & Hodgins, S. (1995). Ventral frontal deficits in psychopathy: Neuropsychological test findings. Neuropsychologia, 33, 139–151.CrossRefPubMedGoogle Scholar
  87. LeDoux, J. (2000). The amygdala and emotion: a view through fear. In J.P. Aggleton (Ed.), The amygdala: A functional analysis (pp. 289–310). Oxford: Oxford University Press.Google Scholar
  88. Levenston, G.K., Patrick, C.J., Bradley, M.M., & Lang, P.J. (2000). The psychopath as observer: Emotion and attention in picture processing. Journal of Abnormal Psychology, 109, 373–386.CrossRefPubMedGoogle Scholar
  89. Linnoila, M., Virkkunen, M., Scheinin, M., Nuutila, A., Rimon, R., & Goodwin, F.K. (1983). Low cerebrospinal fluid 5-hydroxy indoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sciences, 33, 2609–2614.CrossRefPubMedGoogle Scholar
  90. Lorenz, K. (1966). On aggression. New York: Harcourt Brace Jovanovich.Google Scholar
  91. Lykken, D.T. (1957). A study of anxiety in the sociopathic personality. Journal of Abnormal and Social Psychology, 55, 6–10.CrossRefGoogle Scholar
  92. Lykken, D.T. (1995). The antisocial personalities. Hillsdale, New Jersey: Erlbaum.Google Scholar
  93. Mealey, L. (1995). The sociobiology of sociopathy: An integrated evolutionary model. Behavioral and Brain Sciences, 18, 523–599.CrossRefGoogle Scholar
  94. Mitchell, D.G.V., Colledge, E., Leonard, A., & Blair, R.J.R. (submitted). Somatic markers and response reversal: Is there evidence of orbitofrontal cortex dysfunction in psychopathic individuals?Google Scholar
  95. Morris, J.S., Frith, C.D., Perrett, D.I., Rowland, D., Young, A.W., Calder, A.J., & Dolan, R.J. (1996). A differential response in the human amygdala to fearful and happy facial expressions. Nature, 383, 812–815.CrossRefPubMedGoogle Scholar
  96. Morris, J.S., Scott, S.K., & Dolan, R.J. (1999). Saying it with feeling: neural responses to emotional vocalizations. Neuropsychologia, 37, 1155–1163.CrossRefPubMedGoogle Scholar
  97. Murray, E.A., Bussey, T.J., & Wise, S.P. (2000). Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Experimental Brain Research, 133, 114–129.CrossRefGoogle Scholar
  98. Newman, J.P., & Kosson, D.S. (1986). Passive avoidance learning in psychopathic and nonpsychopathic offenders. Journal of Abnormal Psychology, 95, 252–256.CrossRefPubMedGoogle Scholar
  99. Newman, J.P., Patterson, C.M., & Kosson, D.S. (1987). Response perseveration in psychopaths. Journal of Abnormal Psychology, 96, 145–148.CrossRefPubMedGoogle Scholar
  100. Newman, J.P., & Schmitt, W.A. (1998). Passive avoidance in psychopathic offenders: a replication and extension. Journal of Abnormal Psychology, 107, 527–532.CrossRefPubMedGoogle Scholar
  101. Nucci, L.P., & Herman, S. (1982). Behavioral disordered children’s conceptions of moral, conventional, and personal issues. Journal of Abnormal Child Psychology, 10, 411–425.CrossRefPubMedGoogle Scholar
  102. O’Brien, B.S., & Frick, P.J. (1996). Reward dominance: Associations with anxiety, conduct problems, and psychopathy in children. Journal of Abnormal Child Psychology, 24, 223–240.CrossRefPubMedGoogle Scholar
  103. Ogloff, J.R., & Wong, S. (1990). Electrodermal and cardiovascular evidence of a coping response in psychopaths. Criminal Justice and Behavior, 17, 231–245.CrossRefGoogle Scholar
  104. Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York: Oxford University Press.Google Scholar
  105. Passingham, R.E., & Toni, I. (2001). Contrasting the dorsal and ventral visual systems: guidance of movement versus decision making. Neuroimage, 14, S125–S131.CrossRefPubMedGoogle Scholar
  106. Passingham, R.E., Toni, I., & Rushworth, M.F. (2000). Specialisation within the prefrontal cortex: the ventral prefrontal cortex and associative learning. Experimental Brain Research, 133, 103–113.CrossRefGoogle Scholar
  107. Patrick, C.J. (1994). Emotion and psychopathy: Startling new insights. Psychophysiology, 31, 319–330.CrossRefPubMedGoogle Scholar
  108. Patrick, C.J., Bradley, M.M., & Lang, P.J. (1993). Emotion in the criminal psychopath: Startle reflex modulation. Journal of Abnormal Psychology, 102, 82–92.CrossRefPubMedGoogle Scholar
  109. Patrick, C.J., Cuthbert, B.N., & Lang, P.J. (1994). Emotion in the criminal psychopath: Fear image processing. Journal of Abnormal Psychology, 103, 523–534.CrossRefPubMedGoogle Scholar
  110. Pennington, B.F., & Bennetto, L. (1993). Main effects or transaction in the neuropsychology of conduct disorder? Commentary on “The neuropsychology of conduct disorder”. Development and Psychopathology, 5, 153–164.CrossRefGoogle Scholar
  111. Perry, D.G., & Perry, L.C. (1974). Denial of suffering in the victim as a stimulus to violence in aggressive boys. Child Development, 45, 55–62.CrossRefPubMedGoogle Scholar
  112. Phelps, E.A., O’Connor, K.J., Gatenby, J.C., Gore, J.C., Grillon, C., & Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience, 4, 437–441.CrossRefPubMedGoogle Scholar
  113. Phillips, M.L., Young, A.W., Scott, S.K., Calder, A.J., Andrew, C., Giampietro, V., Williams, S.C., Bullmore, E.T., Brammer, M., & Gray, J.A. (1998). Neural responses to facial and vocal expressions of fear and disgust. Proceedings of the Royal Society of London. B, 265, 1809–1817.CrossRefGoogle Scholar
  114. Phillips, M.L., Young, A.W., Senior, C., Brammer, M., Andrews, C., Calder, A.J., Bullmore, E.T., Perrett, D.I., Rowland, D., Williams, S.C.R., Gray, J.A., & David, A.S. (1997). A specified neural substrate for perceiving facial expressions of disgust. Nature, 389, 495–498.CrossRefPubMedGoogle Scholar
  115. Rahman, S.J., Sahakian, B.N., Cardinal, R., Rogers, R., & Robbins, T. (2001). Decision making and neuropsychiatry. Trends in Cognitive Science, 5, 271–277.CrossRefGoogle Scholar
  116. Rahman, S., Sahakian, B.J., Hodges, J.R., Rogers, R.D., & Robbins, T.W. (1999). Specific cognitive deficits in mild frontal variant frontotemporal dementia. Brain, 122, 1469–1493.CrossRefPubMedGoogle Scholar
  117. Raine, A., Buchsbaum, M.S., & LaCasse, L. (1997). Brain abnormalities in murderers indicated by positron emission tomography. Biological Psychiatry, 42, 495–508.CrossRefPubMedGoogle Scholar
  118. Raine, A., Buchsbaum, M.S., Stanley, J., Lottenberg, S., Abel, L., & Stoddard, J. (1994). Selective reductions in prefrontal glucose metabolism in murderers. Biological Psychiatry, 36, 365–373.CrossRefPubMedGoogle Scholar
  119. Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57, 119–127.CrossRefPubMedGoogle Scholar
  120. Raine, A., Phil, D., Stoddard, J., Bihrle, S., & Buchsbaum, M. (1998). Prefrontal glucose deficits in murderers lacking psychosocial deprivation. Neuropsychiatry, Neuropsychology and Behavioral Neurology, 11, 1–7.Google Scholar
  121. Rapcsak, S.Z., Galper, S.R., Comer, J.F., Reminger, S.L., Nielsen, L., Kaszniak, A.W., Verfaellie, M., Laguna, J.F., Labiner, D.M., & Cohen, R.A. (2000). Fear recognition deficits after focal brain damage: A cautionary note. Neurology, 54, 575–581.CrossRefPubMedGoogle Scholar
  122. Rogers, R.D., Everitt, B.J., Baldacchino, A., Blackshaw, A.J., Swainson, R., Wynne, K., Baker, N.B., Hunter, J., Carthy, T., Booker, E., London, M., Deakin, J.F., Sahakian, BJ., & Robbins, T.W. (1999). Dissociable deficits in the decisionmaking cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology, 20, 322–339.CrossRefPubMedGoogle Scholar
  123. Rogers, R.D., Owen, A.M., Middleton, H.C., Williams, E.J., Pickard, J.D., Sahakian, B.J., & Robbins, T.W. (1999). Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. Journal of Neuroscience, 19, 9029–9038.PubMedGoogle Scholar
  124. Rogers, R.D., & Robbins, T.W. (2001). Investigating the neurocognitive deficits associated with chronic drug misuse. Current Opinions in Neurobiology, 11, 250–257.CrossRefGoogle Scholar
  125. Rolls, E.T. (1997). The orbitofrontal cortex. Philosophical Transactions of the Royal Society, B, 351, 1433–1443.CrossRefGoogle Scholar
  126. Rolls, E.T., & Stringer, S.M. (2001). A model of the interaction between mood and memory. Network, 12, 89–109.PubMedGoogle Scholar
  127. Schalling, D. (1978). Psychopathy-related personality variables and the psychophysiology of socialization. In R.D. Hare, & D. Schalling (Eds.), Psychopathic behavior: Approaches to research (pp. 85–106). Chichester, England: Wiley.Google Scholar
  128. Schneider, F., Gur, R.E., Mozley, L.H., Smith, R.J., Mozley, P.D., Censits, D.M., Alavi, A., & Gur, R.C. (1995). Mood effects on limbic blood flow correlate with emotional self-rating: a PET study of oxygen-15 labeled water. Psychiatry Research: Neuroimaging, 61, 265–283.CrossRefPubMedGoogle Scholar
  129. Schneider, F., Habel, U., Kessler, C., Posse, S., Grodd, W., & Muller-Gartner, H.W. (2000). Functional imaging of conditioned aversive emotional responses in antisocial personality disorder. Neuropsychobiology, 42, 192–201.CrossRefPubMedGoogle Scholar
  130. Schneider, F., Weiss, U., Kessler, C., Muller-Gartner, H.W., Posse, S., Salloum, J.B., Grodd, W., Himmelmann, F., Gaebel, W., & Birbaumer, N. (1999). Subcortical correlates of differential classical conditioning of aversive emotional reactions in social phobia. Biological Psychiatry, 45, 863–871.CrossRefPubMedGoogle Scholar
  131. Schoenbaum, G., Chiba, A.A., & Gallagher, M. (1998). Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neuroscience, 1, 155–159.CrossRefPubMedGoogle Scholar
  132. Schoenbaum, G., Chiba, A.A., & Gallagher, M. (2000). Changes in functional connectivity in orbitofrontal cortex and basolateral amygdala during learning and reversal training. Journal of Neuroscience, 20, 5179–5189.PubMedGoogle Scholar
  133. Scott, S.K., Young, A.W., Calder, A.J., Hellawell, D.H., Aggleton, J.P., & Johnson, M. (1997). Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature, 385, 254–257.CrossRefPubMedGoogle Scholar
  134. Shapiro, S.K., Quay, H.C., Hogan, A.E., & Schwartz, K.P. (1988). Response perseveration and delayed responding in undersocialised aggressive conduct disorder. Journal of Abnormal Psychology, 97, 371–373.CrossRefPubMedGoogle Scholar
  135. Siegel, A., Roeling, T.A., Gregg, T.R., & Kruk, M.R. (1999). Neuropharmacology of brain-stimulation-evoked aggression. Neuroscience Biobehavioral Review, 23, 359–389.CrossRefGoogle Scholar
  136. Smetana, J.G. (1993). Understanding of social rules. In M. Bennett (Ed.), The child as psychologist: An introduction to the development of social cognition (pp. 111–141). New York: Harvester Wheatsheaf.Google Scholar
  137. Sprengelmeyer, R., Rausch, M., Eysel, U.T., & Przuntek, H. (1998). Neural structures associated with the recognition of facial basic emotions. Proceedings of the Royal Society of London. B, 265, 1927–1931.CrossRefGoogle Scholar
  138. Stevens, D., Charman, T., & Blair, R.J.R. (2001). Recognition of emotion in facial expressions and vocal tones in children with psychopathic tendencies. Journal of Genetic Psychology, 162, 201–211.CrossRefPubMedGoogle Scholar
  139. Stone, V.E., Baron-Cohen, S., & Knight, R.T. (1998). Frontal lobe contributions to theory of mind. Journal of Cognitive Neuroscience, 10, 640–656.CrossRefPubMedGoogle Scholar
  140. Strauss, E. (1983). Perception of emotional words. Neuropsychologia, 21, 99–103.CrossRefPubMedGoogle Scholar
  141. Stuss, D.T., & Benson, D.F. (1986). The frontal lobes. New York: Raven Press.Google Scholar
  142. Thorpe, S.J., Rolls, E.T., & Maddison, S. (1983). The orbitofrontal cortex: neuronal activity in the behaving monkey. Experimental Brain Research, 49, 93–115.CrossRefGoogle Scholar
  143. Tranel, D., & Damasio, H. (1994). Neuroanatomical correlates of electrodermal skin conductance responses. Psychophysiology, 31, 427–438.CrossRefPubMedGoogle Scholar
  144. Urenjak, J., Williams, S.R., Gadian, D.G., & Noble, M. (1993). Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. Journal of Neuroscience, 13, 981–989.PubMedGoogle Scholar
  145. Volavka, J. (1995). Neurobiology of violence. Washington, DC: American Psychiatric Press.Google Scholar
  146. Volkow, N.D., & Tancredi, L. (1987). Neural substrates of violent behavior. A preliminary study with positron emission tomography. British Journal of Psychiatry, 151, 668–673.CrossRefPubMedGoogle Scholar
  147. Volkow, N.D., Tancredi, L.R., Grant, C., Gillespie, H., Valentine, A., Mullani, N., Wang, G.J., & Hollister, L. (1995). Brain glucose metabolism in violent psychiatric patients: a preliminary study. Psychiatry Research, 61, 243–253.CrossRefPubMedGoogle Scholar
  148. Whalen, P.J., Shin, L.M., Mclnerney, S.C., & Rauch, S.L. (1998). Greater fMRI activation to fearful vs. angry expressions in the amygdaloid region. Neuroscience Abstracts, 24, 692.Google Scholar
  149. Williamson, S., Hare, R.D., & Wong, S. (1987). Violence: Criminal psychopaths and their victims. Canadian Journal of Behavioral Science, 19, 454–462.CrossRefGoogle Scholar
  150. Williamson, S., Harpur, T.J., & Hare, R.D. (1991). Abnormal processing of affective words by psychopaths. Psychophysiology, 28, 260–273.CrossRefPubMedGoogle Scholar
  151. Wong, M., Fenwick, P., Fenton, G., Lumsden, J., Maisey, M., & Stevens, J. (1997). Repetitive and non-repetitive violent offending behavior in male patients in a maximum security mental hospital—clinical and neuroimaging findings. Medicine, Science and Law, 31, 150–160.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • R. James
    • 1
  • R. Blair
    • 1
  1. 1.Institute of Cognitive Neuroscience and Department of PsychologyUniversity College LondonUK

Personalised recommendations