Advertisement

Forecasting Market Indices Using Evolutionary Automatic Programming

A Case Study
  • Michael O’Neill
  • Anthony Brabazon
  • Conor Ryan
Chapter

Abstract

This study examines the potential of an evolutionary automatic programming methodology, Grammatical Evolution, to uncover a series of useful technical trading rules for market indices. A number of markets are analysed; these are the UK’s FTSE, Japan’s Nikkei, and the German DAX. The preliminary findings indicate that the methodology has much potential.

Keywords

Evolutionary Automatic Programming Grammatical Evolution Market Indices Technical Trading Rules FTSE DAX Nikkei 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, F. and R. Karjalainen (1999). “Using genetic algorithms to find technical trading rules,” Journal of Financial Economics, 51, 245–271.CrossRefGoogle Scholar
  2. Bauer R. (1994). Genetic Algorithms and Investment Strategies. New York: John Wiley & Sons.Google Scholar
  3. Brock, W., J. Lakonishok, and B. LeBaron (1992). “Simple Technical Trading Rules and the Stochastic Properties of Stock Returns,” Journal of Finance, 47(5), 1731–1764.CrossRefGoogle Scholar
  4. Brown, S., W. Goetzmann, and A. Kumar (1998). “The Dow Theory: William Peter Hamilton’s Track Record Reconsidered,” Journal of Finance, 53(4), 1311–1333.CrossRefGoogle Scholar
  5. Chan, L. K.C., N. Jegadeesh, and J. Lakonishok (1996). “Momentum strategies,” Journal of Finance, 51(5), 1681–1714.CrossRefGoogle Scholar
  6. Deboeck G. (1994). “Using GAs to Optimise a Trading System,” in G. Deboeck (ed.), Trading on the Edge: Neural, Genetic and Fuzzy Systems for Chaotic and Financial Markets. New York: John Wiley & Sons.Google Scholar
  7. Dissanaike, G. (1997). “Do Stock Market Investors Overreact?,” Journal of Business Finance and Accounting (UK), 24(1), 27–50.CrossRefGoogle Scholar
  8. Glassman, R. (1973). “Persistence and Loose Coupling in Living Systems,” Behavioral Science, 18, 83–98.CrossRefGoogle Scholar
  9. Iba H. and N. Nikolaev (2000). “Genetic Programming Polynomial Models of Financial Data Series,” in Proceedings of CEC 2000, 1459–1466. IEEE Press.Google Scholar
  10. Koza, J. (1992). Genetic Programming. MIT Press.Google Scholar
  11. Lewin, B. (2000). Genes VII. Oxford University Press.Google Scholar
  12. Murphy, J. J. (1999). Technical Analysis of the Financial Markets. New York: New York Institute of Finance.Google Scholar
  13. Neely, C., P. Weiler, and R. Dittmar (1997). “Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach,” Journal of Financial and Quantitative Analysis, 32(4), 405–428.CrossRefGoogle Scholar
  14. O’Neill M. (2001). “Automatic Programming in an Arbitrary Language: Evolving Programs with Grammatical Evolution;” Ph.D. thesis. University of Limerick.Google Scholar
  15. O’Neill M. and C. Ryan (2001). “Grammatical Evolution,” IEEE Transactions on Evolutionary Computation.Google Scholar
  16. O’Neill M., A. Brabazon, C. Ryan, and J. J. Collins (2001). “Evolving Market Index Trading Rules Using Grammatical Evolution,” LNCS 2037, Applications of Evolutionary Computation: EvoWorkshops 2001, 343–352. Springer.Google Scholar
  17. O’Sullivan J. and C. Ryan (2002). “An Investigation into the Use of Different Search Strategies with Grammatical Evolution,” in Proceedings of EuroGP′2002, In print.Google Scholar
  18. Pring, M. (1991). Technical Analysis Explained: The Successful Investor’s Guide to Spotting Investment Trends and Taming Points. McGraw-Hill.Google Scholar
  19. Refenes, A. N., Y. Bentz, D. W. Bunn, A. N. Burgess, and A. D. Zapranis (1997). “Financial Time Series Modelling with Discounted Least Squares Backpropagation,” Neurocomputing, 14, 123–138.CrossRefGoogle Scholar
  20. Ryan C., J. J. Collins, and M. O’Neill (1998). “Grammatical Evolution: Evolving Programs for an Arbitrary Language,” LNCS 1391, Proceedings of EuroGP′98, 83–95. Springer-Verlag.Google Scholar
  21. Zhang, J., E. B. Martin, A. J. Morris, and C. Kiparissides (1997). “Inferential Estimation of Polymer Quality Using Stacked Neural Networks,” Computers and Chemical Engineering, 21 (Supplement), 1025–1030.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Michael O’Neill
    • 1
  • Anthony Brabazon
    • 2
  • Conor Ryan
    • 1
  1. 1.University of LimerickIreland
  2. 2.University College DublinIreland

Personalised recommendations