Metrics for databases: a way to assure the quality

  • Coral Calero
  • Mario Piattini
Part of the Advances in Database Systems book series (ADBS, volume 25)

Abstract

Databases are the core of the Information Systems. The correct functioning of these databases has a direct effect on the quality of the IS that supports it. So, the success associated with an Information System largely depends on the design quality of the database that the system uses. One way for assuring the quality of the databases designs is by using metrics. In this chapter, we will be to give a series of guidelines which allow us to learn how metrics can be developed, in such a way that they can be used to achieve a specific objective related with the quality database design.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basili, V.R. and Weiss, D. A methodology for Collecting Valid Software Engineering Data. IEEE Transactions on Software Engineering. SE-10. 1984. 6:728–738.CrossRefGoogle Scholar
  2. Briand, L.C., Morasca, S. and Basili, V. Property-based software engineering measurement. IEEE Transactions on Software Engineering. 1996. 22(1):68–85.CrossRefGoogle Scholar
  3. Calero C. Definición de un conjunto de métricas para la mantenibilidad de bases de datos relacionales, activas y objeto-relacionales. PhD dissertation. University of Castila-La Mancha. (2001)Google Scholar
  4. Calero,C., Piattini, M. and Genero, M. A case study with relational database metrics, ACS/IEEE International Conference on Computer Systems and Applications (AICCSA 2001), Beirut (Lybannon), 26–29 June. 2001Google Scholar
  5. DÍaz, O. and Piattini, M. Metrics for active databases maintainability.CAISE’99.Heidelberg. Lecture Notes in Computer Science (LCNS) 1626. Springer-Verlag. M. Jarkey A. Oberweis (eds.). 1999; 472–476. ISBN 3–540–66157–3.Google Scholar
  6. DÍaz, O., Piattini, M. and Calero, C. Measuring triggering-interaction complexity on active databases. Information Systems Journal. Elsevier Science Ltd. 2001; 26:17–36.Google Scholar
  7. Henderson-Sellers, B.Object-oriented Metrics - Measures of complexity. Prentice-Hall. Upper Saddle River. New Jersey 1996.Google Scholar
  8. ISO. Software Product Evaluation-Quality Characteristics and Guidelines for their Use. ISO/IEC Standard 9126. Geneva. 1999.Google Scholar
  9. Kish, L. Some statisticals problems in research design. American Sociological Review. 24. 1959; 328–338.CrossRefGoogle Scholar
  10. Kitchenham, B.A. y Stell, J.G. The danger of using axioms in software metrics. IEE Proc.Soft. Eng. 1997, Vol. 144., 5–6:279–285.CrossRefGoogle Scholar
  11. Leavit, N. Whatever happened to Object-Oriented Databases?. IEEE Computer Society. 2000; 16–19.Google Scholar
  12. Morasca, S. and Briand, L.C. Towards a Theoretical Framework for measuring software attributes. Proceeding of the Fourth International.Software Metrics Symposium. 1997. 119–126.CrossRefGoogle Scholar
  13. Pfleeger, S. L. Assessing Software Measurement. IEEE Software. March/April. 1997; 25–26.Google Scholar
  14. Piattini, M., Calero, C., Polo, M. and Ruiz, F. Maintainability in Object-Relational Databases. Proc of The European Software Measurement Conference FESMA 98, Antwerp, May 6–8, Coombes, Van Huysduynen and Peeters (eds.), 1998; 223–230.Google Scholar
  15. Piattini, M., Calero, C., Polo, M. and Ruiz, F. Towards a metric suite for relational database complexityFifth world conference on Integrated Design and Process Technology IDPT 2000Dallas (USA), 4–8 Junio 2000. CD ROM del congreso. ISSN.1090–9389Google Scholar
  16. Piattini, M., Calero, C. and Genero, M. (2001a). Table oriented metrics for relational databases. Software Quality Journal, Vol. 9:79–97, Kluwer Academic PublishersGoogle Scholar
  17. Piattini, M., Calero, C., Sahraoui, H and Lounis, H. Object-relational database metrics. Accepted for publication in L’Objet journal. 200lbGoogle Scholar
  18. Poels., G. and Dedene, G. Distance-Based software measurement: necessay and sufficient properties for software measures. Information and Software Technology. (42). 2000; 35–46.CrossRefGoogle Scholar
  19. Rombach, H.D. Design measurement: some lessonslerned. IEEE Software. 7(3). 1990; 17–25CrossRefGoogle Scholar
  20. Van Den Berg and Van Den Broek. Axiomatic Validation in the Software Metric Development Process. InSoftware Measurement.A. Melton (ed.). (Thomson Computer Press. 1996Google Scholar
  21. Weyuker, E.J. Evaluating software complexity measures. IEEE Transactions on Software Engineering. 1998; 14(9):1357–1365.MathSciNetCrossRefGoogle Scholar
  22. Whitmire, S.A.Object Oriented Design Measurement.Ed. Wiley. 1997.Google Scholar
  23. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B. and Wessl¨¦n, A.Experimentation in Software Engineering. An Introduction.Ed.Kluwer Academic Publishers. 2000CrossRefGoogle Scholar
  24. Zuse, H.A Framework of Software Measurement. Berlin. Walter de Gruyter. 1998CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Coral Calero
    • 1
  • Mario Piattini
    • 1
  1. 1.ALARCOS Research GroupE.S.InformáticaCiudad RealSpain

Personalised recommendations