B

  • T. Poggio
  • S. Mukherjee
  • R. Rifkin
  • A. Raklin
  • A. Verri
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 704)

Abstract

In this chapter we summarize density properties of Reproducing Kernel Hilbert Spaces induced by different classes of kernels. They are important to characterize the power of the associated hypothesis spaces. In the process we characterize the role of b, which is the constant in the standard form of the solution provided by the Support Vector Machine technique \(f(x) = \sum\nolimits_{i = 1}^\ell {\alpha _i } K\left( {x,\:x_i } \right) + b,\) which is a special case of Regularization Machines.

Keywords

RKHS regularization density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Aronszajn, 1950]
    N. Aronszajn Theory of reproducing kernels Trans. Amer. Math. Soc., vol. 686, pp. 337–404, 1950.MathSciNetCrossRefGoogle Scholar
  2. [Berg et al, 1984]
    C. Berg, J.P.R. Christensen, and P. Ressel Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions Springer, 1984.MATHGoogle Scholar
  3. [Courant and Hilbert, 1962]
    R. Courant and D. Hilbert Methods of Mathematical Physics, Vol 2 Interscience, 1962.Google Scholar
  4. [Cucker and Smale, 2001]
    F. Cucker and S. Smale On the Mathematical Foundations of Learning, Bull Amer. Math. Soc., vol. 39, pp. 1–49, 2002.MathSciNetMATHCrossRefGoogle Scholar
  5. [Evgeniou et al, 2000]
    T. Evgeniou, M. Pontil, and T. Poggio Regularization Networks and Support Vector Machines Advances in Computational Mathematics, vol. 13, pp. 1–50, 2000.MathSciNetMATHCrossRefGoogle Scholar
  6. [Freiss et al, 1998]
    T. Friess, N. Cristianini, and C. Campbell The Kernel-Adatron: A fast and simple learning procedure for Support Vector Machines Proceedings of the 15th International Conference in Machine Learning, pages 188–196, 1998.Google Scholar
  7. [Girosi, 1998]
    F. Girosi An equivalence between sparse approximation and support vector machines Neural Computation, vol. 10, pp. 1455–1480, 1998.CrossRefGoogle Scholar
  8. [Girosi et al, 1990]
    F. Girosi and T. Poggio and B. Caprile Extensions of a Theory of Networks for Approximation and Learning: outliers and Negative Examples, Advances in Neural information processings systems 3, R. Lippmann and J. Moody and D. Touretzky, Morgan Kaufmann, 1991, San Mateo, CA.Google Scholar
  9. [Girosi and Poggio, 1990]
    F. Girosi and T. Poggio Networks and the Best Approximation Property Biological Cybernetics, vol. 63, pp. 169–176, 1990.MathSciNetMATHCrossRefGoogle Scholar
  10. [Girosi et al, 1995]
    F. Girosi, M. Jones, and T. Poggio Regularization theory and neural network architectures Neural Computation, vol. 7, pp. 219–269, 1995.CrossRefGoogle Scholar
  11. [Kolmogorov, A.N. and Fonim, S.V., 1957]
    A.N. Kolmogorov and S.V. Fonim Elements of the Theory of Functions and Functional Analysis Dover, 1957Google Scholar
  12. [Lin et al, 2000]
    Y. Lin, Y. Lee, and G. Wahba Support Vector Machines for Classification in Nonstandard Situations TR 1016, March 2000. To appear, Machine LearningGoogle Scholar
  13. [Mercer, 1909]
    J. Mercer Functions of positive and negative type and their connection with the theory of integral equations Phil.los. Trans. Roy. Soc. London Ser. A, vol. 209, pp. 415–446, 1909.MATHCrossRefGoogle Scholar
  14. [Micchelli, 1986]
    C.A. Micchelli Interpolation of scattered data: distance matrices and conditionally positive definite functions Constructive Approximation, vol. 2, pp. 11–22, 1986.MathSciNetMATHCrossRefGoogle Scholar
  15. [Poggio et al, 2001]
    T. Poggio, S. Mukherjee, R. Rifkin, A. Rakhlin and A. Verri b CBCL Paper 198/AI Memo 2001-011, Massachusetts Institute of Technology, Cambridge, MA, July 2001Google Scholar
  16. [Schoenberg, 1998]
    I.J. Schoenberg Metric spaces and completely monotone functions Ann. of Math., vol. 39, pp.811–841, 1938.MathSciNetCrossRefGoogle Scholar
  17. [Tikhonov and Arsenin, 1977]
    A. N. Tikhonov and V. Y. Arsenin Solutions of Ill-posed Problems W. H. Winston, 1977Google Scholar
  18. [Vapnik, 1995]
    V.N. Vapnik The Nature of Statistical Learning Theory Springer, 1995.Google Scholar
  19. [Vapnik, 1998]
    V.N. Vapnik Statistical Learning Theory Wiley, 1998.Google Scholar
  20. [Wahba, 1990]
    G. Wahba Spline models for observational data SIAM, 1990.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • T. Poggio
    • 1
  • S. Mukherjee
    • 1
  • R. Rifkin
    • 1
  • A. Raklin
    • 1
  • A. Verri
    • 2
  1. 1.McGovern Institute and Center for Biological and Computational Learning Center for Genome ResearchWhitehead Institute Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.INFM - DISIUniversita di GenovaGenovaItaly

Personalised recommendations