Advertisement

A Single Gene for Dystonia Involves Both or Either of the Two Striatal Pathways

  • Masaya Segawa
  • Kyoko Hoshino
  • Kei Hachimori
  • Nobuyoshi Nishiyama
  • Yoshiko Nomura
Part of the Advances in Behavioral Biology book series (ABBI, volume 52)

Abstract

Dystonia is characterized by particular abnormalities in posture and movements, which are based on the simultaneous occurrence of muscle contraction in both agonistic and antagonistic muscles and overflow of the contraction to the muscles which are not related to maintaining posture or execution of movements. However, in these abnormal muscle contractions, there are two types, that is, postural and action dystonia, the characteristics of which are shown in Table 1. The former appears as static phenomena of abnormal posturing and the latter as abnormal, often rigorous and ballistic movements. However, the pathophysiology of either type of dystonia has not been clarified.
Table 1

Dominantly Inherited Dystonia have two phenotypes

Postural Dystonia:

Sustained dystonic posture induced by certain posture or movement Hypertonic and hypokinetic state

Action Dystonia:

Violent ballistic movement induced by certain posture or movement Hyperkinetic state without hypotonia

Keywords

Basal Ganglion Globus Pallidus Focal Dystonia Dystonia Gene Postural Dystonia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.
    M. Segawa, Y. Nomura and M. Kase. Diurnally fluctuating hereditary progressive dystonia, in:Handbook of Clinical Neurology/Exirapvramidal Disorders 5(49)edited by J. P. Vinken and W. G. Bruyn (Elsevier, Amsterdam,1986), pp. 529–539.Google Scholar
  2. 2.
    B. S. Bressman, D. de Leon, F. M. Brin, N. Risch, E. R. Burke, E. P. Greene H. Shale and S. Fahn, Idiopathic dystoniaamong Ashkenazi Jews: evidence for autosomal dominant inheritanceAnn Neurol26(5), 612–620 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    H. A. Rajput, G. W. R. Gibb, H. X. Zhong, S. K. Shannak, S. Kish, G. L. Chang and O. Hornykiewicz, Dopa-responsive dystonia: pathological and biochemical observations in one caseAnn Neurol35(4), 396–402 (1994).PubMedCrossRefGoogle Scholar
  4. 4.
    W. Zeman, Pathology of the torsion dystonias (dystonia musculorum deformans)Neurology20(11), 79–88 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    H. lchinose, T. Ohye, E. Takahashi, N. Seki, T. Hori, M. Segawa, Y. Nomura, K. Endo, H. Tanaka, S. Tsuji and et al., Hereditary progressive with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I geneNat Genet8(3), 236–242 (1994).CrossRefGoogle Scholar
  6. 6.
    J. L. Ozelius, J. Hewett, E. C. Page, B. S. Bressman, L. P. Kramer, C. Shalish D. de Leon, F. M. Brin, D. Raymond, P. D. Corey, S. Fahn, J. N. Risch, J. A. Buckler, F. J. Gusella and O. X. Breaketield, The early onset torsion dystonia gene (DYT l) encodes an ATP-binding proteinNat Genet17(I), 40–48 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    O. Bandmann, M. E. Valente, P. Holmans, H. R. A. Surtees, H. J. Walters, A. R. Wevers, D. C. Marsden and W. N. Wood, Dopa-responsive distonia. A clinical and molecular genetic studyAnn Neurol44(4), 649–656 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    Y. Furukawa, J. S. Kish, M. E. Bebin, D. R. Jacobson, S. J. Fryburg, G. W. Wilson, M. Shimadzu, K. Hyland and M. J. Trugman, Dystonia with motor delay in compound heterozygotes for GTP-cyclohydrolase I gene mutationsAnn Neurol 44(1).10–16 (1998).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Nomura, T. Ikeuchi, S. Tsuji and M. Segawa, Two phenotypes and anticipation observed in Japanese cases with early onset torsion dystonia (DYTI) - pathophysiological considerationBrain Dev22(suppl I), 92–101 (2000).CrossRefGoogle Scholar
  10. 10.
    M. Segawa, Y. Nomura, S. Tanaka. S. flakamada. E. Nagata, E. Soda and M. Kase., Hereditary progressive dystonia with marked diurnal fluctuation. Consideration on its pathophysiology based on the characteristics of clinical and polysomnographical findings, AdvNeurol50, 367–376 (1988).Google Scholar
  11. 11.
    M. Segawa, R. Tanaka, Y. Nomura, H. Fukuda and O. Hikosaka, Saccadic eye movements in basal ganglia disorders, in:Recent Advances in Clinical Neurophysiologv.edited by Kimura,J., Shibsaki,H.(Elsevier Science 13.V., Amsterdam, 1996), pp. 170–176.Google Scholar
  12. 12.
    N. Ilayase. N. Miyashita and Il. Narabayashi. presented et at the 6l Triennial Meeting International Basal Ganglia Society, (Brewster, MA, USA, 1998). pp. 15–18.Google Scholar
  13. 13.
    M. Segawa, Hereditary progressive dystonia with marked diurnal fluctuationBrain Dev22(suppl 1), 65–80 (2000).CrossRefGoogle Scholar
  14. 14.
    O. Hornykiewicz, Striatal dopamine in dopa-responsive dystonia, Comparison. with idiopathic Parkinson’s disease and other dopamine-dependent disorders, in:Age-Related Dopamine-Dependent Disorders/ Monogr Neural Sci. t’ol 14.edited by Segawa M. and Nomura Y. (Karger Basel:. 1995). pp. 101–108.Google Scholar
  15. 15.
    F. Shima, S. Sakata, S.J. Sun, M. Kato, M. Fukui and P. R. Iacono, The role of the descending pallidoreticular pathway in movement disorders. in:Age-Related Dopamine-Dependent Disorders/ rtionogr Neural Sci. f’ol 14.edited by Segawa M and Nomura Y (Karger Basel:, 1995), pp. 197–207.Google Scholar
  16. 16.
    A. Antonini, L. K. Leenders, H. Reist, R. Thomann, El-F. Beer and J. Locher, Effect of age on D2 dopamine receptors in normal human brain measured by positron emission tomography andI IC- acioprideArch Neurol50(5), 474–480 (1993).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Kishore, G. T. Nygaard. R. de la Fuente-Fernandez, B. A. Naini, M. Schulzer, E, Mak J. T. Ruth, B. D. Caine, J. B. Snow and. J. A. Stoessl. Striatal D2 receptors in symptomatic and asymptomatic carriers of dopa responsive dystonia measured with [I ICJ-raclopride and positron-emission tomography;Veurologv50(4), 1028–32 (1998).Google Scholar
  18. 18.
    S. D. Kreiss, A. L. Anderson and R. J. Waters, Apomorphine and dopamine D receptor agonists increase the tiring rates ofsubthalamic nucleus neurons.Neuroscience72(3), 863–876 (1996).PubMedCrossRefGoogle Scholar
  19. 19.
    S. D. Keiss, W. C. Mastropietro, S. S. Rawj and R. J. Walters, The response of subthalamic nucleus neurons to model of Parkinson’s diseaseJ Neurosci17(17), 6807–6819 (1997).Google Scholar
  20. 20.
    M. Segawa, Development of the nigrostriatal dopamine neuron and the pathways in the basal gangliaBrain Dev22(suppl 1), 1–4 (2000).CrossRefGoogle Scholar
  21. 21.
    L. J. Vitek, J. Zhang, M. Evatt, K. Mewes, R. M. DeLong, T. Hashimoto, S. Triche, and E. R. A. Bakay, Gpi Pallidotomy for Dystonia: Clinical Outcome and Neuronal Activity. Dystonia 3: AdsNeurol78, 211219(1998).Google Scholar
  22. 22.
    D. Eidelberg, Metabolic brain networks in idiopathic torsion dystonia, Abstract presented at the Third International Dystonia Symposium (1996).Google Scholar
  23. 23.
    J. I. Mitchell, S. Boyce, A. M. Sambrook and R. A. Crossman, A 2- deoxyglucose study of the effects of dopamne agonists on the parkinsonian primate brainBrain115(1’13), 809–824 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Masaya Segawa
    • 1
  • Kyoko Hoshino
    • 1
  • Kei Hachimori
    • 1
  • Nobuyoshi Nishiyama
    • 2
  • Yoshiko Nomura
    • 1
  1. 1.Segawa Neurological Clinic for ChildrenTokyoJapan
  2. 2.Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan

Personalised recommendations