The Epididymis as a Target for Male Contraception

  • Trevor G. Cooper


The advantage of post-testicular contraception lies in its rapid onset of infertility, its reversible nature and the fast return of fertility once therapy is withdrawn. Natural infertility stemming from epididymal dysfunction observed in s everal do mestic species and some transgenic mice indicates that this is no idle quest. Although epididymal malfunction has been suggested to account for 20 % of cases of human necrozoospermia (Nduwayo et al., 1995), it is difficult to prove, so that there are few cases of male infertility unequivocally caused by epididymal dysfunction (De Kretser et al., 1998). Most reports on contraceptives for males describe animal experiments, but they are based on physiological principals of sperm transport, maturation and storage that are applicable to man. The actual or predicted action of compounds with contraceptive potential will be reviewed here, but to avoid undue length and overlap with recent updates of research in this area (Cooper and Yeung, 1999a,Cooper and Yeung, 1999b), reference to Cooper (1992) is recommended for the older literature. Studies attempting to induce infertility in animals can be categorized by the processes they interrupt into those which alter sperm transport, modify luminal fluid composition or attack spermatozoa; they will be discussed under these main headings.


Sperm Motility Epididymal Sperm Male Reproductive Tract Sperm Protein Human Epididymis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken, R.J., and Vernet, P., 1998, Maturation of redox regulatory mechanisms in the epididymis.J Reprod Fertil, Supplement53:109.Google Scholar
  2. Beagley, K.W., Wu, Z.L., Pomering, M. and Jones, R.C., 1998, Immune responses in the epididymis: implications for immunocontraception.J Reprod Fertil, Supplement53:235.Google Scholar
  3. Berubé, B., and Sullivan, R., 1994, Inhibition of in vivo fertilization by active immunization of male hamsters against a 26-kDa sperm glycoprotein.Biol Reprod,51:1255.PubMedCrossRefGoogle Scholar
  4. Bone, W., Jones, N.G., Kamp, G., Yeung, C.-H., and Cooper, T.G., 2000, The antifertility effect of ornidazole in male rats: inhibition of a glycolysis-related motility pattern and zona binding required for fertilisationin vitro.J Reprod Fertil,118:127.PubMedCrossRefGoogle Scholar
  5. Bone, W., Jones, A.R., Morin, C., Nieschlag, E., Cooper, T.G., 2001, Susceptibility of glycolytic enzyme activity and motility of spermatozoa from the rat, mouse and man to inhibition by proven and putative chlorinated antifertility compounds in vitro.J Androl,in press.Google Scholar
  6. Boué, F., Sullivan, R., 1996, Cases of human infertility are associated with the absence of P34H, an epididymal sperm antigen.Biol Reprod,54:1018.PubMedCrossRefGoogle Scholar
  7. Boué, F., Berube, B., De Lamirande, E., Gagnon, C., and Sullivan, R., 1994, Human sperm-zona pellucida interaction in inhibited by an antiserum against a hamster sperm protein.Biol Reprod,51:577.PubMedCrossRefGoogle Scholar
  8. Boué, F., Blais, J., and Sullivan, R., 1996, Surface localization of P34H, an epididymal protein, during maturation, capacitation, and acrosome reaction of human spermatozoa.Biol Reprod,54:1009.PubMedCrossRefGoogle Scholar
  9. Breton, S., Smith, P.J.S., Lui, B., and Brown, D., 1996, Acidification of the male reproductive tract by a proton pumping, H+)-ATPase.Nature Medicine,2:470.PubMedCrossRefGoogle Scholar
  10. Breton, S., Hammar, K., Smith, P.J.S., and Brown, D., 1998, Proton secretion in the male reproductive tract: involvement of Cl- -independent HC03- transport.Am J Physiol,275 :C1134.PubMedGoogle Scholar
  11. Brown-Woodman, P.D.C., and White, I.G., 1975, Effect of α-chlorohydrin on cauda epididymis and spermatozoa of the rat and general physiological status.Contraception,11:69.CrossRefGoogle Scholar
  12. Bunnag, D., Chaturapanich, G., Lewin, L.M., and Pholpramool, C., 1992, Alterations of epididymal sperm surface proteins by some antifertility agents in the rats.Thai J Physiol Sci,5:27.Google Scholar
  13. Caflisch, C.R., and DuBose, T.D., 1990, Effect of α-chlorohydrin on in situ pH in rat testis and epididymis.Contraception,41:207.PubMedCrossRefGoogle Scholar
  14. Carr, D.W., Usselman, M.C., and Acott, T.S., 1985, Effects of pH, lactate, and viscoelastic drag on sperm motility: a species comparison.Biol Reprod,33:588.PubMedCrossRefGoogle Scholar
  15. Chaturapanich, G., Sujarit, K., and Pholpramool, C., 1999, Effects of sulphapyridine on sperm transport through the rat epididymis and contractility of the epididymal duct.J Reprod Fertil,117:199.PubMedCrossRefGoogle Scholar
  16. Chulavatnatol, M., Hasibuan, I., Yindepit, S., and Eksittikul, T., 1977, Lack of effect of α-chlorohydrin on the ATP content of rat, mouse and human spermatozoa.J Reprod Fertil,50:137.PubMedCrossRefGoogle Scholar
  17. Clifton, V.L., Husband, A.J., and Kay, D.J., 1992, Local immunity in the male reproductive tract.Immunol Cell Biol,70:301.PubMedCrossRefGoogle Scholar
  18. Cooney, S.J., and Jones, A.R., 1988, Inhibitory effects of, S)-3-chorolactaldehyde on the metabolic activity of boar spermatozoa in vitro.J Reprod Fertil,82:309.PubMedCrossRefGoogle Scholar
  19. Cooper, T.G., 1992, The epididymis as a site of contraceptive attack, in:Spermatogenesis, Fertilization, Contraception. Molecular, Cellular and Endocrine Events in Male Reproduction,E. Nieschlag, and U.-F. Habenicht, eds., Schering Foundation Workshop, Springer Verlag.Google Scholar
  20. Cooper, T.G., 1998a, Epididymis, in:Encyclopedia of Reproduction.2, J.D. Neill, and E. Knobil, eds., Academic Press, San Diego.Google Scholar
  21. Cooper, T.G., 1998b, Interaction of proteins with epididymal secretions.J Reprod Fertil Suppl53:119.PubMedGoogle Scholar
  22. Cooper, T.G., Jones, A.R., 2000, The metabolism of the putative antifertility agents 3–36chloro-l-hydroxypropanone and its dimethyl ketal in the male rat.Int J Androlin pressGoogle Scholar
  23. Cooper, T.G., and Yeung, C.-H., 1999a, Recent biochemical approaches to post-testicular, epididymal contraception.Human Reprod Update,5:141.CrossRefGoogle Scholar
  24. Cooper, T.G., and Yeung, C.-H., 1999b, Recent chemical approaches to post-testicular contraception.Asian J Androl,1:29.PubMedGoogle Scholar
  25. Cooper, T.G., Bone, W., Jones, A.R., Morin, C., Nieschlag, E., 2000,In vitroinhibition of human sperm glycolysis and kinematics by chloro-compounds. Poster, 1st European Congress of Andrology, L’Aquila, Italy (March 2000)Google Scholar
  26. Cooper, T.G., Wang, X.-S., Yeung, C.H., and Lewin, L.M., 1997, Successful lowering of epididymal carnitine by administration of pivalate to rats.Int J Androl,20:180.PubMedCrossRefGoogle Scholar
  27. Costa, S.L., Boekelheide, K., Vanderhyden, B.C., Seth, R., and McBurney, M.W., 1997, Male infertility caused by epididymal dysfunction in transgenic mice expressing a dominant negative mutation of retinoic acid receptor a.Biol Reprod,56:985.PubMedCrossRefGoogle Scholar
  28. Crabo, B., and Appelgren, L.-E., 1972, Distribution of [14C]α-chlorohydrin in mice and rats.J Reprod Fertil,30:161PubMedCrossRefGoogle Scholar
  29. Cukierski, M.A., Sina, J.L., Prahalada, S., Wise, L.D., Antonello, J.M., MacDonald, J.S., and Robertson, R.T., 1991, Decreased fertility in male rats administered the 5α-reductase inhibitor, Finasteride, is due to deficits in copulatory plug formation.Reprod Toxicol5:353.PubMedCrossRefGoogle Scholar
  30. De Kretser, D.M., Huidobro, C., Southwick, G.J., and Temple-Smith, P.D., 1998, The role of the epididymis in human infertility.J Reprod Fertil, Supplement53:271.Google Scholar
  31. Dobbie, M.S., Porter, K.E., and Jones, A.R., 1988, Is the nephrotoxicity of (R)-3-chlorolactate in the rat caused by 3-chloropyruvate?Xenobiotica,18:1389.PubMedCrossRefGoogle Scholar
  32. Drevet, J.R., 2000, Glutathione peroxidases expression in the mammalian epididymis and vas deferens, in:Andrology 2000,F. Francavilla, S. Francavilla, and G. Forti, eds., Litografia Brandolini, Chieti, Italy.Google Scholar
  33. Evans, B., Gannon, B.J., Heath, J.W., and Burnstock, G., 1972, Long-lasting damage to the internal male genital organs and their adrenergic innervation in rats following chronic treatment with the antihypertensive drug guanethidine.Fertil Steril,23:657.PubMedGoogle Scholar
  34. Fisher, H.M., and Aitken, R.J., 1997, Comparative analysis of the ability of precursor germ cells and epididymal spermatozoa to generate reactive oxygen metabolites.J Exp Zool,277:390.PubMedCrossRefGoogle Scholar
  35. Ford, W.C.L., and Harrison, A., 1983, The activity of glyceraldehyde 3-phosphate dehydrogenase in spermatozoa from different regions of the epididymis in laboratory rodents treated with α-chlorohydrin or 6-chloro-deoxyglucose.J Reprod Fertil,69:147.PubMedCrossRefGoogle Scholar
  36. Ford, W.C.L., and Waites, G.M.H., 1978, Chlorinated sugars: a biochemical approach to the control of male fertility.Int J Androl, Suppl2:541.CrossRefGoogle Scholar
  37. Ford, W.C.L., Waites, G.M.H., 1981, The effect of high doses of 6-chloro-6-deoxyglucose on the rat.Contraception,24:577.PubMedCrossRefGoogle Scholar
  38. Ford, W.C.L., Harrison, A., Takkar, G.L., and Waites, G.M.H., 1979, Inhibition of glucose catabolism in rat, hamster, rhesus monkey and human spermatozoa by α-chlorohydrin.Int J Androl,2:275.CrossRefGoogle Scholar
  39. Frayne, J., Townsend, D., and Nicholson, H.D., 1996, Effects of oxytocin on sperm transport in the pubertal rat.J Reprod Fertil,106:299.CrossRefGoogle Scholar
  40. Gong X.D., Leung G.P.H., Cheuk B.L.Y., and Wong P.Y.D., 2000, Interference with the formation of the epididymal microenvironment - a new strategy for male contraception.Asian J Androl,2:39.PubMedGoogle Scholar
  41. Grove K.L., and Speth, R.C., 1989, Rat epididymis contains functional angiotensin II receptors.Endocrinology,125:223.PubMedCrossRefGoogle Scholar
  42. Habara-Ohkubo, A., Shirahata, T., Takikawa, O., and Yoshida, R., 1993, Establishment of an antitoxoplasma state by stable expression of mouse indoleamine 2,3-dioxygenase.Infect Immun,6:1810Google Scholar
  43. Hagaman, J.R., Moyer, J.S., Bachman, E.S., Sibony, M., Magyar, P.L., Welch, J.E., Smithies, O., Krege, J. H., and O’Brian, D.A., 1998, Angiotensin-converting enzyme and male infertility.Proc Nat Acad Sci US,95:2552.CrossRefGoogle Scholar
  44. Hall, L., Williams, K., Perry, A.C.F., Frayne, J., and Jury, J.A., 1998, The majority of human glutathione peroxidase type 5 (GPX5) transcripts are incorrectly spliced: implications for the role of GPX5 in the male reproductive tract.Biochem J,333:5.PubMedGoogle Scholar
  45. Harneit, S., Paust, H. J., Mukhopadhyay, A.K., and Ergun, S., 1997, Localization of endothelin-1 and endothelin-receptor A and B in human epididymis.Mol Human Reprod,3:579.CrossRefGoogle Scholar
  46. Hib, J., 1976, The ‘in vivo’ effects of oxytocin and vasopressin on spontaneous contractility of the rat epididymis.Int J Fertil,22:63.Google Scholar
  47. Hibi, H., Yamamoto, M., and Miyake, K., 1995, Effects of alpha-blockers on sperm concentration, motility, intraluminal pressure and fluid movement in the rat cauda epididymidis.J Urol,154:606.PubMedCrossRefGoogle Scholar
  48. Hinton, B.T., and Keefer, D.A., 1985, Binding of, 3H)aldosterone to a single population of cells within the rat epididymis.J Steroid Biochem,23:231.PubMedCrossRefGoogle Scholar
  49. Hinton, B.T., Hernandez, H., and Howards, S.S., 1983, The antifertility agents α-chlorohydrin, 5-thio-D- glucose, and 6-chloro-6-deoxy-D-glucose interfere with sugar transport across the epithelium of the rat caput epididymidis.J Androl,4:216.PubMedGoogle Scholar
  50. Hinton, B.T., Palladino, M.A., Mattmueller, D.R., Bard, D., and Good, K., 1991, Expression and activity of gamma-glutamyl transpeptidase in the rat epididymis.Mol Reprod Develop,28:40.CrossRefGoogle Scholar
  51. Hod, Y., Pentyala, S.N., Whyard, T.C., and El-Maghrabi, M., 1999, Identification and characterization of a novel protein that regulates RNA-protein interaction.J Cell Biochem,72:435.PubMedCrossRefGoogle Scholar
  52. Homonnai, Z.T., Paz, G., Sofer, A., Yedwab, G.A., and Kraicer, P.F., 1975, A direct effect of α-chlorohydrin on motility and metabolism of ejaculated human spermatozoa.Contraception,12:579.PubMedCrossRefGoogle Scholar
  53. Homonnai, Z.T., Shilon, M., and Paz , G.F., 1984, Phenoxybenzamine - an effective male contraceptive pill.Contraception,29:479.PubMedCrossRefGoogle Scholar
  54. Jelks, K.B., and Miller, M.G., 1999, Epididymal toxicity of α-chlorohydrin: effects on glyceraldehyde-3- phosphatedehydrogenase activity.Ann Mtg Toxicol Soc 1999,abstr 1800.Google Scholar
  55. Jenkins, A.D., Lechene, C.P., and Howards, S.S., 1983, The effects of cyproterone acetate on the elements in the intraluminal fluids of the testis and epididymis of the rat.Arch Androl11:151.PubMedCrossRefGoogle Scholar
  56. Jones, R., 1998, Plasma membrane structure and remodelling during sperm maturation in the epididymis.J Reprod Fertil, Suppl53:73.Google Scholar
  57. Jones, A.R., 1998, Chemical interference with sperm metabolic pathways.J Reprod Fertil, Supplement53:227.Google Scholar
  58. Jones, A.R., and Cooper, T.G., 1996, Metabolism of 36Cl-ornidazole after oral application to the male rat in relation to its antifertility activity.Xenobiotica,27:711.CrossRefGoogle Scholar
  59. Jones, A.R., and Cooper, T.G., 1999, A re-appraisal of the post-testicular antifertility action and toxicity of chlorinated antifertility compounds.Int J Androl,22:130.PubMedCrossRefGoogle Scholar
  60. Jones, A.R., and Dobbie, M.S., 1991, The male antifertility activity of 6-chloro-6-deoxyglucose.Contraception,44:649.PubMedCrossRefGoogle Scholar
  61. Jones, R., and Glover, T., 1975, Interrelationships between spermatozoa, the epididymis and epididymal plasma, in:Biology of the Male Gamete,J.G. Duckett, and P.M. Racey, eds., Academic Press, London.Google Scholar
  62. Jones, A.R., and Morin, C., 1995, Inhibition of glycolysis in boar spermatozoa by l,6-dichloro-l,6-dideoxy-D-fructose.Biochim Biophys Acta,1244:141.PubMedCrossRefGoogle Scholar
  63. Jones, A.R., and Murcott, C., 1976, The oxidative metabolism of α-chlorohydrin and the chemical induction of spermatocoeles.Experientia,32:1135.PubMedCrossRefGoogle Scholar
  64. Jones, A.R., and O’Brien, R.W., 1980, Metabolism of three active analogues of the male antifertility agent a- chlorohydrin in the rat.Xenobiotica,10:365.PubMedCrossRefGoogle Scholar
  65. Jones, A.R., Mashford, M., and Murcott, P.M., 1979, The metabolism of 3-amino-l-chloropropan-2-ol in relation to its antifertility activity in male rats.Xenobiotica,9:253.PubMedCrossRefGoogle Scholar
  66. Kalla, N.R., and Singh, B., 1981, Synergistic effect of alpha chlorohydrin on the influence of copper ions on human spermatozoa.Int J Fertil,26:65.PubMedGoogle Scholar
  67. Kedia, K., and Markland, C., 1975, The effect of pharmacological agents in ejaculation.J Urol,114:569.PubMedGoogle Scholar
  68. Kempinas, W.D.G., Suarez, J.D., Roberts, N.L., Strader, L; Ferrell, J., Goldman, J.M., and Klinefelter, G.R.., 1998a, Rat epididymal sperm quantity, quality, and transit time after guanethidine-induced sympathectomy.Biol Reprod,59:890.PubMedCrossRefGoogle Scholar
  69. Kempinas, W.D., Suarez, J.D., Roberts, N.L., Strader, L.F., Ferrell, J., Goldman, J.M., Narotsky, M.G., Perreault, S.D., Evenson, D.P., Ricker, D.D., and Klinefelter, G.R.., 1998b, Fertility of rat epididymal sperm after chemically and surgically induced sympathectomy.Biol Reprod,59:897.PubMedCrossRefGoogle Scholar
  70. Kjaergaard, N., Kjaergaard, B., and Lauriken, J.G., 1988, Prazosin, an adrenergic blocking agent inadequate as male contraceptive pill.Contraception,37:621.PubMedCrossRefGoogle Scholar
  71. Klinefelter, G.R., and Suarez, J.D., 1997, Toxicant-induced acceleration of epididymal sperm transit: androgen-dependent proteins may be involved.Reprod Toxicol,11:511.PubMedCrossRefGoogle Scholar
  72. Klinefelter, G.R., Laskey, J.W., Ferrell, J., Suarez, J.D., and Roberts, N.L., 1997, Discriminant analysis indicates a single sperm protein, SP22, is predictive of fertility following exposure to epididymal toxicants.J Androl,18:139.PubMedGoogle Scholar
  73. Krege, J.H., John, S.W.M., Langenbach, L.L., Hodgin, J.B., Jennette, J.C., O’Brian, D.A., and Smithies, O., 1995, Male-female differences in fertility and blood pressure in ACE-deficient mice.Nature,375:146.PubMedCrossRefGoogle Scholar
  74. Lee, C.Y., Zhang, J.H., Wong, E., Chow, S.N., Sun, P., Yang, Y.Z., and Leung, W.Y., 1987, Sex difference of antifertility effect by passively immunized monoclonal sperm antibodies.Am J Reprod Immunol Microbiol,13:9.PubMedGoogle Scholar
  75. Legare, C., Gaudreault, C., St-Jacques, S., and Sullivan, R., 1999, P34H sperm protein is preferentially expressed by the human corpus epididymidis.Endocrinology,140:3318.PubMedCrossRefGoogle Scholar
  76. Lewin, L.M., Fournier-Delpech, S., Weissenberg, R., Golan, R., Cooper, T.G., Pholpramool, C., and Shochat, L., 1997, Effects of pivalic acid and sodium pivalate on L-carnitine concentrations in the cauda epididymidis and on male fertility in the hamster.Reprod Fertil Develop,9:427.CrossRefGoogle Scholar
  77. Lue, Y., Sinha Hikim, A.P., Wang, C., Leung, A., Baravarian, S., Reutrokul, V., Sangsawan, R., Chaichana, S., and Swerdloff, R.S., 1998, Triptolide: a potential male contraceptive.J Androl,19:479.PubMedGoogle Scholar
  78. Maggi, M., Malozowski, S., Kassis, S., Guardabasso, V., and Rodbard, D., 1987, Identification and characterization of two classes of receptors for oxytocin and vasopressin in porcine tunica albuginea, epididymis, and vas deferens.Endocrinology,120:986.PubMedCrossRefGoogle Scholar
  79. Manin, M., Lecher, P., Martinez, A., Tournadre, S., and Jean, C., 1995, Exportation of mouse vas deferens protein, a protein without a signal peptide, from mouse vas deferens epithelium: a model of apocrine secretion.Biol Reprod,52:50.PubMedCrossRefGoogle Scholar
  80. Meistrich, M.L., Hughes, T.J., and Bruce, W.R.T., 1975, Alteration of epididymal sperm transport and maturation in mice by oestrogen and testosterone.Nature,258:145.PubMedCrossRefGoogle Scholar
  81. Mieusset, R., 1995, Spermatozoa and embryo development, in:Frontiers in Endocrinology. Epididymis: Role and Importance in Male Infertility Treatment,S. Hamamah, R. Mieusset, and J.L. Dacheux, eds., Ares Serono Symposia, Rome.Google Scholar
  82. Moore, H.D.M., and Akhondi, M.A., 1996, Fertilizing capacity of rat spermatozoa is correlated with decline in straight-line velocity measured by continuous computer-aided sperm analysis: epididymal rat spermatozoa from the proximal cauda have a greater fertilizing capacity in vitro than those from the distal cauda or vas deferens.J Androl,17:50.PubMedGoogle Scholar
  83. Mulryan, K., Gitterman, D.P., Lewis, C., Vial, C., Leckie, B.J., Cobb, A.L., Brown, J.E., Conley, E.C., Buell, G., Pritchard, C.A., and Evans, R.J., 2000, Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors.Nature,403:86.PubMedCrossRefGoogle Scholar
  84. Nagakubo, D., Taira, T., Kitaura, H., Ikeda, M., Tamai, K., Iguchi-Ariga, S. M., and Ariga, H., 1997, DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras.Biochem Biophys Res Commun,231:509.PubMedCrossRefGoogle Scholar
  85. Nduwayo, L., Berthmy, C., Lansac, J., Tharanne, M.J., and Lecomte, P., 1995, Condiute à tenir devant une nécrozoospermie.Contr Fertil Sexual,23:682.Google Scholar
  86. Nicholson, H.D., Parkinson, T.J., and Lapwood, K.R., 1999, Effects of oxytocin and vasopressin on sperm transport from the cauda epididymis in sheep.J Reprod Fertil,117:299.PubMedCrossRefGoogle Scholar
  87. Nonogaki, T., Noda, Y., Narimoto, K., Shiotani, M., Mori, T., Matsudam T, and Yoshida, O., 1992, Localization of CnZn-superoxide dismutase in the human male genital organs.Human Reprod,7:81.Google Scholar
  88. Oberländer, G., Yeung, C.H., and Cooper, T.G., 1994, Induction of reversible infertility in male rats by oral ornidazole and its effects on sperm motility and epididymal secretions.J Reprod Fertil,100:551.PubMedCrossRefGoogle Scholar
  89. Ozaki, Y., Nichol, C.A., and Duch, D.S., 1987, Utilization of dihydroflavin mononucleotide and superoxide anion for the decyclization of L-tryptophan by murine epididymal indoleamine 2,3-dioxygenase.Arch Biochem Biophys,257:207.PubMedCrossRefGoogle Scholar
  90. Palacios, J., Regadera, J., Nistal, M., and Paniagua, R., 1991 Apical mitochondria-rich cells in the human epididymis: an ultrastructural, enzymohistochemical, and immunohistochemical study.Anat Rec,231:82.PubMedCrossRefGoogle Scholar
  91. Paris, F., Weinbauer, G.F., Bluem, V., and Nieschlag, E., 1994, The effect of androgens and antiandrogens on the immunohistochemical localization of the androgen receptor in accessory reproductive organs of male rats.J Steroid Biochem Molec Biol,48:129.PubMedCrossRefGoogle Scholar
  92. Paz, G.F., Shilon, M., and Homonnai, Z.T., 1984, The possible use of phenoxybenzamine as a male contraceptive drug: studies on male rats.Contraception,29:189.PubMedCrossRefGoogle Scholar
  93. Peri, A., Fantoni, G., Granchi, S., Vannelli, G.G., Barni, T., Amerini, S., Ouilli, C., Barbagli, G., Forti, G., Serio, M., and Maggi, M., 1997, Gene expression of endothelin-1, endothelin-converting enzyme-1, and endothelin receptors in human epididymis.J Clin Endocr Metab,82:3797.PubMedCrossRefGoogle Scholar
  94. Pholpramool, C., and Sornpaisarn, L., 1980, Fertility and electrolyte composition of the rat cauda epididymal plasma and spermatozoa before and after castration.Contraception,22:673.PubMedCrossRefGoogle Scholar
  95. Pholpramool, C., Ruchirawat, S., Verawatnapakul, V., Paovalo, C., and Lewin, L.M., 1991, Structural requirements of some sulphonamides that possess an antifertility activity in male rats.J Reprod Fertil,92:169.PubMedCrossRefGoogle Scholar
  96. Pollanen, P., and Cooper, T. G., 1995, Vascular permeability to effectors of the immune system in the male rat reproductive tract at puberty.J Reproduct Immunol,28:85.CrossRefGoogle Scholar
  97. Pöllänen, P., Cooper, T.G., Yeung, C.H., and Saari, T., 1995, Regulation of the transport of immunoglobulin G into the male rat reproductive tract.J Reproduct Immunol,28:111.CrossRefGoogle Scholar
  98. Pöllänen, P., Cooper, T.G., Kokk, K., Saari, T., and Setchell, B.P., 1997, Microvascular permeability to the F(ab’)2 fragment of IgG in the male rat reproductive tract at puberty.J Reprod Immunol,32:221.PubMedCrossRefGoogle Scholar
  99. Prasad, M.R.N., Singh, S.P., and Rajalakshmi, M., 1970, Fertility control in male rats by continuous release of microquantities of cyproterone acetate from subcutaneous silastic capsules.Contraception,2:165.CrossRefGoogle Scholar
  100. Rastogi, R.K., 1979, A critical appraisal of the effects of the antiandrogen, cyproterone acetate, on the epididymis in connection with fertility control in the mouse.J Steroid Biochem,11:101.PubMedCrossRefGoogle Scholar
  101. Ratnasooriya, W.D., 1982, Effect of local application of oxyphenonium to epididymis on fertility in rats.Ind J Exp Biol,20:555.Google Scholar
  102. Ratnasooriya, W.D., 1993, Intra-epididymal administration of a,ß -methylene ATP impairs fertility of male rats.Med Sci Res,2:411.Google Scholar
  103. Ratnasooriya, W.D., Wadsworth, R.M., 1984, Effects of Prazosin on fertility of male rats.J Reprod Fertil,71:643.Google Scholar
  104. Ratnasooriya, W.D., and Wadsworth, R.M., 1990, Impairment of fertility of male rats with prazosin.Contraception,41:441.PubMedCrossRefGoogle Scholar
  105. Ratnasooriya, W.D., and Wadsworth, R.M., 1994, Tamsulosin, a selective a 1-adrenoceptor antagonist, inhibits fertility of male rats.Andrologia,26:107.PubMedCrossRefGoogle Scholar
  106. Ratnasooriya, W.D., and Manatunga, A.M.V.R., 1981, Effect of local application of guanethidine to epididymis on fertility in rats.Indian J Exp Biol,19:867.PubMedGoogle Scholar
  107. Ratnasooriya, W.D., Gilmore, D.P., and Wadsworth, R.M, 1980, Effect of local application of sympathomimetic drugs to the epididymis on fertility in rats.J Reprod Fertil,58:19.PubMedCrossRefGoogle Scholar
  108. Ricker, D.D., Crone, J.F., Chanmess, S.L., Klinefelter, G.R., and Chang, T.S.K., 1997, Partial sympathetic denervation of the rat epididymis permits fertilization but inhibits embryo development.J Androl,18:131.PubMedGoogle Scholar
  109. Rotruck, J.T., Pope, A.L., Gauther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G., 1973, Selenium: biochemical role as a component of glutathione peroxidase.Science,179:588.PubMedCrossRefGoogle Scholar
  110. Sheline, C.T., and Choi, D.W., 1998, Neuronal death in cultured murine cortical cells is induced by inhibition of GAPDH and triosephosphate isomerase.Neurobiology Dis,5:47.CrossRefGoogle Scholar
  111. Slott, V.L., Suarez, J.D., Simmons, J.E., and Perreault, S.D., 1990, Acute inhalation exposure to epichlorohydrin transiently decreases rat sperm velocity.Fund Appl Toxicol,15:597.CrossRefGoogle Scholar
  112. Slott, V.L., Jeffay, S.C., Suarez, J.D., Barbee, R.R., and Perreault, S.D., 1995, Synchronous assessment of sperm motility and fertilizing ability in the hamster following treatment with α-chlorohydrin.J Androl,16:523.PubMedGoogle Scholar
  113. Slott, V.L., Jeffay, S.C., Dyer, C.J., and Barbee, P.S.D., 1997, Sperm motion predicts fertility in male hamsters treated with α-chlorohydrin.J Androl,18:708.PubMedGoogle Scholar
  114. Stevenson, D., Ford, S.A., Du Toit, J.I., and Jones, A.R., 1984, Spermatozoal glyceraldehyde 3-phosphate dehydrogenase.Proc Austr Biochem Soc,16:51.Google Scholar
  115. Sujarit, S., and Pholpramool, C., 1985, Enhancement of sperm transport through the rat epididymis after castration.J Reprod Fertil,74:497.PubMedCrossRefGoogle Scholar
  116. Sum, C.S., and Cheung, W.T., 1995, Characterization of contractile response to angiotensin in epididymal rat vas deferens.Pharmacology,51:105.PubMedCrossRefGoogle Scholar
  117. Tainio, H., 1994, Peptidergic innervation of the human testis and epididymis.Acta Histochem,96:415.PubMedCrossRefGoogle Scholar
  118. Toshimori, K., Kuwajima, M., Yoshinaga, K., Wakayama, T., and Shima, K., 1999, Dysfunctions of the epididymis as a result of primary carnitine deficiency in juvenile visceral steatosis mice.FEBS Lett,446:323.PubMedCrossRefGoogle Scholar
  119. Toth, G.P., Stober, J.A., Read, E.J., Zenick, H., and Smith, M.K., 1989, The automated analysis of rat sperm motility following subchronic epichlorohydrin administration: methodologic and statistical considerations.J Androl,10:401.PubMedGoogle Scholar
  120. Toth, G.P., Stober, J.A., Zenick, H., Reads, E.J., Christ, S.A., Smith, and M.K., 1991, Correlation of sperm motion parameters with fertility in rats treated subchronically with epichlorhydrin.J Androl,12:54.PubMedGoogle Scholar
  121. Toth, G.P., Wang, S.R., McCarthy, H., Tocco, D.R., and Smith, M.K., 1992, Effects of three male reproductive toxicants on rat cauda epididymal sperm motion.Reprod Toxicol,6:507.PubMedCrossRefGoogle Scholar
  122. Tsang, A.Y.F., Lee, W.M., and Wong, P.Y.D., 1981, Effects of antifertility drugs on epididymal protein secretion, acquisition of sperm surface proteins and fertility in male rats.Int J Androl,4:703.PubMedCrossRefGoogle Scholar
  123. Turner, T.T., Reich, G.W., 1985, Cauda epididymal sperm motility: a comparison among five species.Biol Reprod,32:120.PubMedCrossRefGoogle Scholar
  124. Ursini, F., Heim, S., Kiess, M., Maiorino, M., Roveri, A., Wissing, J., and Flohé, L., 1999, Dual function of the selenoprotein PHGPX during sperm maturation.Science,285:1393.PubMedCrossRefGoogle Scholar
  125. Ventura, S., Pennefather, J.M., 1991, Sympathetic co-transmission to the cauda epididymis of the rat: characterization of postjunctional adrenoceptors.Br J Pharmacol,102:540.PubMedCrossRefGoogle Scholar
  126. Vernet, P., Rigaudiére, N., Ghyselinck, N., Dufaure, J.P., and Drevet, J.R., 1996, In vitro expression of a mouse tissue specific glutathione-peroxidase-like protein lacking the selenocysteine can protect stably transfected mammalian cells against oxidative damage.Biochem Cell Biol,74:125.PubMedCrossRefGoogle Scholar
  127. Vernet, P., Faure, J., Dufaure, J.P. and Drevet, J.R., 1997, Tissue and developmental distribution, dependence upon testicular factors and attachment to spermatozoa of GPX5, a murine epididymis- specific glutathione peroxidase.Mol Reprod Dev,47:87.PubMedCrossRefGoogle Scholar
  128. Vernet, P., Rock, E., Mazur, A., Rayssiguier, Y., Dufaure, J.P., and Drevet, J.R., 1999, Selenium-independent epididymis-restricted glutathione peroxidase 5 protein (GPX5) can back up failing Se-dependent GPXs in mice subjected to selenium deficiency.Mol Reprod Dev,54:362.PubMedCrossRefGoogle Scholar
  129. von Richie, R., Scholer, H.J., Angehrn, P., Fernex, M., Hummler, H., Jeunet, F., Schärer, K., Schüpbach, M., and Schwartz, D.E., 1978, Grundlagen der Chemotherapie von Trichomoniasis und Amoebiasis mit Ornidazol.Arzneim Forsch,28:612.Google Scholar
  130. Wagenfeld, A., Yeung, C.H., Strupat, K., and Cooper, T.G., 1998a, Shedding of a protein from rat epididymal sperm associated with infertility induced by ornidazole and α-chlorohydrin .Biol Reprod,58:1257.PubMedCrossRefGoogle Scholar
  131. Wagenfeld, A., Gromoll, J., and Cooper, T.G., 1998b, Molecular cloning and expression of rat contraception associated protein 1, CAP1), a protein putatively involved in fertilization.Biochem Biophys Res Commun,251:545.PubMedCrossRefGoogle Scholar
  132. Wagenfeld, A., Yeung, C.-H., Shivaji, S., Sundareswaran, V.R., Aragi, H., and Cooper, T.G., 2000, Expression and cellular localization of contraception associated protein 1. submittedGoogle Scholar
  133. Wang, Y., Ben, K., Cao, X., and Wang, Y., 1996, Transport of anti-sperm monoclonal IgA and IgG into murine male and female genital tracts from blood. Effect of sex hormones.J Immunol,156:1014.PubMedGoogle Scholar
  134. Welch, J.E., Schatte, E. C, O’Brien, D.A., and Eddy, E.M., 1992, Expression of a glyceraldehyde 3-phosphate dehydrogenase gene specific to mouse spermatogenic cells.Biol Reprod,46:869.PubMedCrossRefGoogle Scholar
  135. Welch, J.E., Barbee, R.R., Roberts, N.L., Suarez, J.D., and Klinefelter, G.R., 1998, SP22: a novel fertility protein from a highly conserved gene family.J Androl,19:385.PubMedGoogle Scholar
  136. Welch, J.E., Brown, P.L., O’Brien, D.A., Magyar, P.L., Bunch, D.O., Mori, C., and Eddy, E.M., 2000, Human glyceraldehyde 3-phosphate dehydrogenase-2 gene is expressed specifically in spermatogenic cells.J Androl,21:628.Google Scholar
  137. Wen, R.Q., and Wong, P.Y.D., 1988, Reserpine treatment increases viscosity of fluid in the epididymis of rats.Biol Reprod,38:969.PubMedCrossRefGoogle Scholar
  138. Westhoff, D., and Kamp, G., 1997, Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa.J Cell Sci,110:1821.PubMedGoogle Scholar
  139. Whyard, T.C., Cheung, W., Sheynkin, Y., Waltzer, W.C., and Hod, Y., 2000, Identification of RS as a flagellar and head sperm protein.Mol Reprod Develop,55:189.CrossRefGoogle Scholar
  140. Williams, K., Frayne, J., and Hall, L., 1998, Expression of extracellular glutathione peroxidase type 5, GPX5, in the rat male reproductive tract.Mol Human Reprod,4:841.CrossRefGoogle Scholar
  141. Williamson, K., Frayne, J., McLaughlin, E.A., and Hall, L., 1998, Expression of extracellular superoxide dismutase in the human male reproductive tract, detected using antisera raised against a recombinant protein.Mol Human Reprod,4:235.CrossRefGoogle Scholar
  142. Wong, P.Y.D., and Lee, W.M., 1982, Effects of spironolactone, aldosterone antagonist, on electrolyte and water content of the cauda epididymidis and fertility of male rats.Biol Reprod,27:771.PubMedCrossRefGoogle Scholar
  143. Wong, P.Y.D., and Yeung, C.H., 1977, Effect of α-chlorohydrin on transport processes in perfused rat cauda epididymidis.Contraception,16:637.CrossRefGoogle Scholar
  144. Wong, P.Y.D., Au, C.L., and Ngai, H.K., 1980, Effects of 6-chloro-6-deoxyglucose on electrolyte and water transport in the epididymis and fertility of male rats.Int J Androl,3:82.PubMedCrossRefGoogle Scholar
  145. Yamamoto, M., Hibi, H., and Miyake, K., 1995, Effects of alpha-blocker on daily testicular sperm production and sperm concentration, motility, intraluminal pressure and fluid movement in the rat epididymis.Tohoku J Exp Med,117:25.CrossRefGoogle Scholar
  146. Yeung, C.H., and Cooper, T.G., 1994, Study of the role of epididymal α-glucosidase in the fertility of male rats by administration of the enzyme inhibitor castanospermine.J Reprod Fertil,102:401.PubMedCrossRefGoogle Scholar
  147. Yeung, C.H., Cooper, T.G., Weinbauer, G.F., Bergmann, M., Kleinhans, G., Schulze, H., and Nieschlag, E., 1989, Fluid-phase transcytosis in the primate epididymis in vitro and in vivo.Int J Androl,12:384.PubMedCrossRefGoogle Scholar
  148. Yeung, C.H., Wagenfeld, A., Nieschlag, E., and Cooper, T.G., 2000, The cause of infertility of c-ros tyrosine kinase knockout male mice. Biol Reprod, in press.Google Scholar
  149. Yoshida, R., Nukiwa, T., Watanabe, Y., Fujiwara, M., Hirata, F., and Hayashi, O., 1980, Regulation of indoleamine 2,3-dioxygenase activity in small intestine and the epididymis of mice.Arch Biochem,Byophys,203:343.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Trevor G. Cooper
    • 1
  1. 1.Institute of Reproductive Medicine of the UniversityMünsterGermany

Personalised recommendations