Biological Reactive Intermediates VI pp 535-539

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 500)

Elevation of Glutathione Levels by Coffee Components and Its Potential Mechanisms

  • Gerlinde Scharf
  • Sonja Prustomersky
  • Wolfgang W. Huber

Abstract

The tripeptide glutathione (L-γ-glutamyl-L-cysteinylglycine) is found ubiquitous in microorganisms, plants and animals. In mammalian cells, where the tripeptide fulfils numerous functions, concentrations range from 0.5 to 10 mM (Meister & Tate, 1976; Meister, 1984; Redegeld et al., 1990). Glutahione is involved, for example, in the synthesis of proteins and DNA, in the regulation of enzyme activity, in the transport and reservoir of amino acids. A very important function of glutathione is the protection of cells, for instance as an antioxidant or as a co-factor in the conjugation of xenobiotics (Meister & Anderson, 1983; Redegeld et al., 1990).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyne, A. F., and Ellmann, G. L., 1972, A methodology for analysis of tissue sulfhydryl components, Analytical Biochemistry 46(2): 639.PubMedCrossRefGoogle Scholar
  2. Bradford, M. M., 1976, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry 72: 248.PubMedCrossRefGoogle Scholar
  3. Cavin, C., Holzhäuser, D., Constable, A., Huggett, A. C., and Schilter, B., 1998, The coffee-specific diterpenes cafestol and kahweol protect against aflatoxin B1-induced genotoxicity through a dual mechanism, Carcinogenesis 19(8): 1369.PubMedCrossRefGoogle Scholar
  4. Eaton, D. L. and Hamel, D. M., 1994, Increase in γ-glutamylcysteine synthetase activity as a mechanism for butylated hydroxyanisole-mediated elevation of hepatic glutathione, Toxicology and Applied Pharmacology 126: 145.PubMedCrossRefGoogle Scholar
  5. Griffith, O. W., Anderson, M. E., and Meister, A., 1979, Inhibition of glutathione biosynthesis by prothionine sulfoximine, a selective inhibitor ofγ-glutamylcysteine synthetase, The Journal of Biological Chemistry 254(4): 1205.PubMedGoogle Scholar
  6. Griffith, O. W., 1982, Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione, The Journal of Biological Chemistry 257(22): 13704.PubMedGoogle Scholar
  7. Huber, W., McDaniel, L. P., Kaderlik, K. R., Teitel, C. H., Lang, N. P., and Kadlubar, F. F.,1997, Chemoprotection against the formation of colon DANN adducts from the food-borne carcinogen 2-amino- 1-methyl-6-phenylimidazo[4,5-b]pyridine in the rat, Mutation Research 376: 115.PubMedCrossRefGoogle Scholar
  8. Huang, C.-S., Moore, W. R., and Meister, A., 1988, On the active site thiol of γ-glutamylcysteine synthetase: Relationships to catalysis, inhibition, and regulation, Processings of the National Academy of. Science. 85: 2464.CrossRefGoogle Scholar
  9. Lebo, R. V. and Kredlich, N. M., 1978, Inactivation of human gamma-glutamylcysteine synthetase by cystamine. Demonstration and quantification of enzyme-ligand complexes, Journal of Biological Chemistry 253: 2615.PubMedGoogle Scholar
  10. Lieners, C., Redl, H., Molnar, H., Furst, W., Hallstrom, S., and Schlag, G., 1989, Lipidperoxidation in a canine model of hypovolemic-traumatic shock, Progressions in Clinical and Biological Research 308: 345–50.Google Scholar
  11. Liu, R.-M., Hu, H., Robison, T. W., and Forman, H. J., 1996, Increased γ-glutamylcysteine synthetase and γ-glutamyl transpeptidase activities enhance resitance of rat lung epithelial L2 cells to quinone toxicity, American Journal of Respiratory Cell Molecular Biology 14: 192.Google Scholar
  12. Meister, A. and Tate, S. S., 1976, Glutathione and related γ-glutamyl compounds: Biosynthesis and utilization, Annual Review of Biochemistry 45: 559.PubMedCrossRefGoogle Scholar
  13. Meister, A. and Anderson, M. E., 1983, Glutathione Annual Reviews in Biochemistry 52: 711.CrossRefGoogle Scholar
  14. Meister, A., 1984, New aspects of glutathione biochemistry and tranport: selective alteration of glutathione metabolism, Federation Proceedings 43(15): 3031.PubMedGoogle Scholar
  15. Meister, A, 1985, Glutathione synthetase from rat kidney, Methods in Enzymology 113: 393.PubMedCrossRefGoogle Scholar
  16. Moellering, D., McAndrew, J., Patel, R. P., Cornwell, T., Lincoln, T., Cao, K., Messina, J.L., Forman, H. J., Jo, H., and Darleγ-Usmar, V. M., 1998, Nitric oxide-dependent induction of glutathione synthesis through increased expression of γ-glutamylcysteine synthetase, Archives of Biochemistry and Biophysics 358(1): 74.PubMedCrossRefGoogle Scholar
  17. Moore, W., Wiener, H. L., and Meister, A., 1987, Inactivation of gamma-glutamylcysteine synthetase, but not of glutamine synthetase, by S-sulfocysteine and S-sulfohomocysteine, The Journal of Biological Chemistry 262(35): 16771.PubMedGoogle Scholar
  18. Nardi, G. and Cipollaro, M, 1990, Assay of γ-Glutamylcysteine synthetase and glutathione synthetase in erythrocytes by high-performance liquid chromatography in fluorimetric detection, Journal of Chromatography 530: 122.PubMedCrossRefGoogle Scholar
  19. Oppenheimer, L., Wellner, V. P., Griffith, O. W., and Meister, A., 1979, Glutathione synthetase, The Journal of Biological Chemistry 254(12):5184.PubMedGoogle Scholar
  20. Ochi, T. (1995) Hydrogen peroxide increases the activity of γ-Glutamylcysteine synthetase in cultured chinese hamster V79 cells, Archives of Toxicology 70: 96.PubMedCrossRefGoogle Scholar
  21. Redegeld, F. A. M., Koster, A. S., van Bennekom, W. P., 1990, Determination of tissue Glutathione. in: Glutathione: Metabolism and Physiological Functions. J. Vina ed., CRC Press, Boca Raton.Google Scholar
  22. Richman, P. G., Orlowski, M., and Meister, A., 1973, Inhibition of gamma-glutamylcysteine synthetase by L-methionine-S-sulfoximine The Journal of Biological Chemistry 248: 6684.PubMedGoogle Scholar
  23. Richman, P. G. and Meister, A., 1975, Regulation of γ-glutamylcysteine synthetase by nonallosteric feedback inhibition by glutathione, The Journal of Biological Chemistry 250(49): 1422.PubMedGoogle Scholar
  24. Romero, F. J. and Galaris, D., 1990, Compartmentation of cellular glutathione in mitochondrial and cytosoloic pools. in: Glutathione: Metabolism and Physiological Functions. J. Vina ed., CRC Press, Boca Raton.Google Scholar
  25. Sacchetta, P., Di Cola, D., and Federici, G., Alkaline hydrolysis of N-ethylmaleimide allows a rapid assay of glutathione disulfide in biological samples, Analytical Biochemistry 154(1):205.Google Scholar
  26. Shi, M. M., Kugelman, A., Iwamoto, T., Tian, L., and Forman, H. J., 1994, Quinone-induced oxidative stress elevates glutathione and induces γ-glutamylcysteine synthetase activity in rat lung epithelial L2 cells, The Journal of Biological Chemistry 269(42): 26512.PubMedGoogle Scholar
  27. Tian, L., Shi, M. M., and Forman, H. J., 1997, Increased transcription of the regulatory subunit of γ-glutamylcysteine synthetase in rat lung epithelial L2 cells exposed to oxidative stress of glutathione depletion Archives of Biochemistry and Biophysics 342(1): 126.PubMedCrossRefGoogle Scholar
  28. Turesky, R. J., Lang, N. P., Butler, M. A., Teitel, C. H., and Kadlubar, F. F., Metabolic activation of carcinogenic heterocyclic aromatic amines by human liver and colon, Carcinogenesis 12(10): 1839.Google Scholar
  29. Woods, J. S., Davis, H. A., and Baer, R. P., 1992, Enhancement of γ-glutamylcysteine synthetase mRNA in rat kidney by methyl mercury. Archives of Biochemistry and Biophysics 296(1): 350PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Gerlinde Scharf
    • 1
  • Sonja Prustomersky
    • 1
  • Wolfgang W. Huber
    • 1
  1. 1.Institute of Cancer ResearchViennaAustria

Personalised recommendations