Three-Dimensional Digital Topolgical Analysis of Trabecular Bone

  • Bryon R. Gomberg
  • Punam K. Saha
  • Hee Kwon Song
  • Scott N. Hwang
  • Felix W. Wehrli
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 496)

Abstract

The morphology of trabecular bone networks has been described as a complex network of interconnecting plates and rods1,2and the clinical importance of this morphology is well documented3,4.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Parfitt, C. H. E. Mathews, A. R. Villanueva, M. Kleerekoper, B. Frame, and D. S. Rao, “Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss,” Journal of Clinical Investigation, vol. 72, pp. 1396–409, 1983.PubMedCrossRefGoogle Scholar
  2. 2.
    A. Odgaard and H. J. Gundersen, “Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions,” Bone, vol. 14, pp. 173–82, 1993.PubMedCrossRefGoogle Scholar
  3. 3.
    J. E. Aaron, R. M. Francis, M. Peacock, and N. B. Makins, “Contrasting microanatomy of idiopathic and corticosteroid-induced osteoporosis,” Clinical Orthopedics and Related Research, pp. 294–305, 1989.Google Scholar
  4. 4.
    M. Amling, M. Posl, H. Ritzel, M. Hahn, M. Vogel, V. J. Wening, and G. Delling, “Architecture and distribution of cancellous bone yield vertebral fracture clues. A histomorphometric analysis of the complete spinal column from 40 autopsy specimens,” Archives of Orthopaedic & Trauma Surgery, vol. 115, pp. 262–9, 1996.CrossRefGoogle Scholar
  5. 5.
    A. Odgaard, “Three-dimensional methods for quantification of cancellous bone architecture,” Bone, vol. 20, pp. 315–28, 1997.PubMedCrossRefGoogle Scholar
  6. 6.
    S. Majumdar, D. Newitt, B. van Rietbergen, M. Bredella, G. von Ingersleben, S. Harris, C. Chesnut, H. Genant, and M. B., “Magnetic Resonance Imaging Derived Measurement of the Biomechanical Properties of Trabecular Bone in the Calcaneus,” presented at ISMRM 8th Meeting and Exhibition, Denver, CO, 2000.Google Scholar
  7. 7.
    S. Majumdar, H. K. Genant, S. Grampp, D. C. Newitt, V.-H. Truong, J. C. Lin, and A. Mathur, “Correlation of trabecular bone structure with age, bone, mineral density, and osteoporotic status: in vivo studies in the distal radius using high-resolution magnetic resonance imaging,” Journal of Bone and Mineral Research, vol. 12, pp. 111–118, 1997.PubMedCrossRefGoogle Scholar
  8. 8.
    C. L. Gordon, C. E. Webber, N. Christoforou, and C. Nahmias, “In vivo assessment of trabecular bone structure at the distal radius from high-resolution magnetic resonance images,” Medical Physics, vol. 24, pp. 585–593, 1997.PubMedCrossRefGoogle Scholar
  9. 9.
    F. W. Wehrli, S. N. Hwang, J. Ma, H. K. Song, J. C. Ford, and J. G. Haddad, “Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing [published erratum appears in Radiology 1998 Jun;207(3):833],” Radiology, vol. 206, pp. 347–357, 1998.PubMedGoogle Scholar
  10. 10.
    T. Hildebrand and P. Ruegsegger, “Quantification of bone microarchitecture with the structural model index,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 1, pp. 15–23, 1997.PubMedCrossRefGoogle Scholar
  11. 11.
    A. Rosenfeld, “Adjacency in Digital Pictures,” Information and Control, vol. 26, pp. 24–33, 1974.CrossRefGoogle Scholar
  12. 12.
    T. Y. Kong and A. Rosenfeld, “Digital Topology: Introduction and Survey,” Computer Vision Graphics and Image Processing, vol. 48, pp. 357–393, 1989.CrossRefGoogle Scholar
  13. 13.
    R. T. DeHoff, E. H. Aigeltinger, and K. R. Craig, “Experimental determination of the topological properties of three-dimensional microstructures,” Journal of Microscopy, vol. 95, pp. 69–91, 1972.CrossRefGoogle Scholar
  14. 14.
    L. A. Feldkamp, S. A. Goldstein, A. M. Parfitt, G. Jesion, and M. Kleerekoper, “The direct examination of three-dimensional bone architecture in vitro by computed tomography,” Journal of Bone and Mineral Research, vol. 4, pp. 3–11, 1989.PubMedCrossRefGoogle Scholar
  15. 15.
    P. K. Saha and B. B. Chaudhuri, “3D digital topology under binary transformation with applications,” Computer Vision and Image Understanding, vol. 63, pp. 418–429, 1996.CrossRefGoogle Scholar
  16. 16.
    P. K. Saha, B. R. Gomberg, and F. W. Wehrli, “Three-dimensional digital topological characterization of cancellous bone architecture,” International Journal of Imaging Systems and Technology, vol. 11, pp. 8190, 2000.CrossRefGoogle Scholar
  17. 17.
    B. G. Gomberg, P. K. Saha, H. K. Song, S. N. Hwang, and F. W. Wehrli, “Topological Analysis of Trabecular Bone MR Images,” IEEE Transactions on Medical Imaging, vol. 19, pp. 166–174, 2000.PubMedCrossRefGoogle Scholar
  18. 18.
    F. W. Wehrli, B. R. Gomberg, S. N. Hwang, H. K. Song, and P. J. Snyder, “Is Cancellous Bone Architecture in the Distal Radius Associated with Vertebral Fracture Load?,” presented at ISMRM 8th Meeting and Exhibition, Denver, CO, 2000.Google Scholar
  19. 19.
    H. K. Song and F. W. Wehrli, “In vivo micro-imaging using alternating navigator echoes with applications to cancellous bone structural analysis,” Magnetic Resonance in Medicine, vol. 41, pp. 947–953, 1999.PubMedCrossRefGoogle Scholar
  20. 20.
    J. Wolff, Das Gesetz der Transformation der Knochen. Berlin: A. Hirschwald, 1892.Google Scholar
  21. 21.
    S. A. Goldstein, R. Goulet, and D. McCubbrey, “Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone,” Calcified Tissue International, vol. 53, pp. 5127–133,1993.CrossRefGoogle Scholar
  22. 22.
    S. C. Cowin, “The relationships between the elasticity tensor and the fabric tensor,” Mechanics of Materials, vol. 4, pp. 137–147, 1985.CrossRefGoogle Scholar
  23. 23.
    W. J. Whitehouse, “Scanning electron micrographs of cancellous bone from the human sternum,” Journal of Pathology, vol. 116, pp. 213–224, 1975.PubMedCrossRefGoogle Scholar
  24. 24.
    B. R. Gomberg, P. K. Saha, H. K. Song, and F. W. Wehrli, “Direct Measurement of Trabecular Bone Anisotropy from in vivo MR Images,” presented at ISMRM 8th Meeting and Exhibition, Denver, CO, 2000.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Bryon R. Gomberg
    • 1
  • Punam K. Saha
    • 2
  • Hee Kwon Song
    • 3
  • Scott N. Hwang
    • 3
  • Felix W. Wehrli
    • 3
  1. 1.Laboratory for Structural NMR Imaging, Department of Radiology, and Department of BioengineeringUniversity of PennsylvaniaPennsylvania
  2. 2.Laboratory for Structural NMR ImagingMedical Image Processing GroupPennsylvaniaUSA
  3. 3.Laboratory for Structural NMR ImagingPennsylvaniaUSA

Personalised recommendations