Detection of the Activity of the Ectopeptidases DPIV and APN Using Sensitive Fluorogenic Substrates

  • Carmen Mrestani-Klaus
  • Susan Lorey
  • Jürgen Faust
  • Frank Bühling
  • Klaus Neubert


Dipeptidyl peptidase IV (DPIV, DPPIV, EC is a membranebound serine exopeptidase that has been identified as the leukocyte antigen CD26.


U937 Cell Dipeptidyl Peptidase Fluorogenic Substrate Substrate Hydrolysis Anchor Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beauvais, A., Monod, M., Wyniger, J., Debeaupuis, J.P., Grouzman, E., Brakch, N., Svab, J, Hovanessian, A.G., andLatge, J.P, 1997, Dipeptidyl peptidase IV secreted by Aspergillus fumigatus, a fungus pathogenic to humans. Infec. Immun. 65: 3042–3047.Google Scholar
  2. Blanco, J., Nguyen, C, Callebaut, C, Jacotot, E., Krust, B., Mazaleyrat, J.-P., Wakselman, M., and Hovanessian, A.G., 1998, Dipeptidyl peptidase IV-beta - further characterization and comparison to dipeptidyl peptidase IV activity. Eur. J. Biochem. 256: 369–378.PubMedCrossRefGoogle Scholar
  3. Bongers, J., Lambros, T., Ahmad, M., and Heimer, E.P., 1992, Kinetics of dipeptidyl peptidase IV proteolysis of growth hormone-releasing factor and analogs. Biochim. Biophys. Acta 1122: 147–153.PubMedCrossRefGoogle Scholar
  4. Bordallo, C, Schwencke, J., and Suarez Rendueles, M., 1984, Localisation of the thermosensitive X-prolyl dipeptidyl aminopeptidase in the vacuolar membrane of Saccharomyces cerevisiae. FEBSLett. 173: 199–203.CrossRefGoogle Scholar
  5. Brandt, W., Lehmann, T., Thondorf, I., Born, I., Schutkowski, M., Rahfeld, J., Neubert, K., and Barth, A., 1995, A model of the active site of dipeptidyl peptidase IV predicted by comparative molecular field analysis and molecular modelling simulations. Int. J. Pep. Prot. Res. 46: 494–507.CrossRefGoogle Scholar
  6. Brynes, P.J., Bevilacqua, P., and Green, A., 1981, 6-Aminoquinolinone as a fluorogenic leaving group in peptide cleavage reactions: A new fluorogenic substrate for chymotrypsin. Anal. Biochem. 116: 408–413.PubMedCrossRefGoogle Scholar
  7. Bühling, F., Kunz, D., Reinhold, D., Ulmer, A.J., Ernst, M., Flad, H-D., and Ansorge, S., 1994, Expression and functional role of Dipeptidyl peptidase IV (CD26) on human natural killer cells. Nat. Immun. 13: 270–279.PubMedGoogle Scholar
  8. Bühling, F., Junker, U, Neubert, K., Jäger, L., and Ansorge, S., 1995, Functional role of CD26 on human B lymphocytes. Immunol. Lett. 45: 47–51.PubMedCrossRefGoogle Scholar
  9. Butenas, S., Di Lorenzo, M.E., and Mann, K.G., 1997, Ultrasensitive fluorogenic substrates for serine proteases. Thromb. Haemost. 78: 1193–1201.PubMedGoogle Scholar
  10. Darmoul, D., Voisin, T., Couvineau, A., Rouyer-Fessard, C., Salomon, R., Wang, Y., Swallow, D.M., and Laburthe, M., 1994, Regional expression of epithelial dipeptidyl peptidase IV in the human intestines. Biochem. Biophys. Res. Commun. 203: 1224–1229.PubMedCrossRefGoogle Scholar
  11. Dehnas, B., Gelfi, J., LHaridon, R., Vogel, L.K., Sjöström, H., Noren, O., and Laude, H., 1992, Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357: 417–420.CrossRefGoogle Scholar
  12. De Meester, I., Korom , S., Van Damme, J., and Scharpé, S., 1999, CD26, let it cut or cut it down. Immunol. Today 20: 367–375.Google Scholar
  13. Duke-Cohan, IS., Morimoto, C, Rocker, J.A., and Schlossman, S.F., 1995, A novel form of dipeptidyl peptidase IV found in human serum. J. Biol. Chem. 270: 14107–14114.PubMedCrossRefGoogle Scholar
  14. Duke-Cohan, J.S., Morimoto, C, Rocker, J.A., and Schlossmann, S.F., 1996, Serum high molecular weight dipeptidyl peptidase IV (CD26) is similar to a novel antigen DPPT-L released from activated T cells. J. Immunol. 156: 1714–1721.PubMedGoogle Scholar
  15. Fischer, G., Heins, J., and Barth, A., 1983, The conformation around the peptide bond between the P1- and P2-positions is important for catalytic activity of some proline- specific proteases. Biochim. Biophys. Ada 742: 452–462.CrossRefGoogle Scholar
  16. Fleischer, B., 1994, CD26: A surface protease involved in T-cell activation. Immunol Today 15 180–184.PubMedCrossRefGoogle Scholar
  17. Fujii, H., Nakajima, M, Aoyagi, T., and Tsuruo, T., 1996, Inhibition of tumor cell invasion and matrix degradation by aminopeptidase inhibitors. Biol. Pharm. Bull. 19: 6–10.PubMedCrossRefGoogle Scholar
  18. Funkhouser, J.D., Tangada, S.D., Jones, M., O, S.J., and Peterson, R.D., 1991, pl46 type II alveolar epithelial cell antigen is identical to aminopeptidase N. Am. J. Physiol. 260: L274–L279.PubMedGoogle Scholar
  19. Gillespie, T.J., Konings, P.N., Merrill, B.J., and Davis, T.P., 1992, A specific enzyme assay for aminopeptidase M in rat brain. Life Sci. 51: 2097–2106.PubMedCrossRefGoogle Scholar
  20. Gossrau, R., 1985, Cytochemistry of membrane proteases. Histochem. J. 17: 737–771.PubMedCrossRefGoogle Scholar
  21. Gutheil, W.G., Subramanyam, M., Flentke, G.R., Sanford, D.G., Munoz, E., Huber, B.T., and Bachovchin, W.W., 1994, Human immunodeficiency virus 1 Tat binds to dipeptidyl aminopeptidase IV (CD26): A possible mechanism for Tat’s immunosuppressive activity. Proc. Natl. Acad. Sci. USA 91: 6594–6598.PubMedCrossRefGoogle Scholar
  22. Harada, M, Hiraoka, B.H., Fukasawa, K.M., and Fukasawa, K, 1984, Chemical modification of dipeptidyl peptidase IV: Involvement of an essential tryptophan residue at the substrate binding site. Arch. Biochem. Biophys. 234: 622–628.PubMedCrossRefGoogle Scholar
  23. Heins, J., Neubert, K., Barth, A., Canizaro, P.C., and Behal, F.J., 1984, Kinetic investigations of the hydrolysis of aminoacyl-p-nitroanilides by dipeptidyl peptidase IV from human and pig kidney. Biochim. Biophys. Acta 785: 30–35.PubMedCrossRefGoogle Scholar
  24. Heins, J., Welker, P., Schönlein, C, Born, I., Hartrodt, B., Neubert, K., Tsuru, D., and Barth, A., 1988, (I) Substrate specificity of dipeptidyl peptidase IV from pig kidney and proline-specific endopeptidase from Flavobacterium meningosepticum. Biochim. Biophys. Acta 954: 161–169.PubMedCrossRefGoogle Scholar
  25. Helene, A., Beaumont, A., and Roques, B.P., 1991, Functional residues at the active site of aminopeptidase N. Eur. J. Biochem. 196: 385–393.PubMedCrossRefGoogle Scholar
  26. Hopsu-Havu, V.K. and Glenner, G.G., 1966, A new dipeptide naphthylamidase hydrolysing glycyl-prolyl-ß-naphthylamid. Histochemie 7: 197–201.PubMedCrossRefGoogle Scholar
  27. Ikehara, Y., Ogata, S., and Misumi, Y., 1994, Dipeptidyl peptidase IV from rat liver. Meth. Enzymol. 244:215–227.PubMedCrossRefGoogle Scholar
  28. Jacotot, E., Callebaut, C., Blanco, J., Krust, B., Neubert, K., Barth, A., and Hovanessian, A.G., 1996, Dipeptidyl peptidase IV-ß a novel form of cell surface expressed protein with dipeptidyl peptidase IV activity. Eur. J. Biochem. 239: 248–258.PubMedCrossRefGoogle Scholar
  29. Kähne, T., Lendeckel, U., Wrenger, S., Neubert, K., Ansorge, S., and Reinhold, D., 1999, Dipeptidyl peptidase IV: A cell surface peptidase involved in regulating T cell growth (Review). Int. J. Mol. Med. 4: 3–15.PubMedGoogle Scholar
  30. Kaspari, A., Diefenthal, T., Grosche, G., Schierhorn, A., and Demuth, H.-U., 1996, Substrates containing phosphorylated residues adjacent to proline decrease the cleavage by proline-specific peptidases. Biochim. Biophys. Acta 1293: 147–153.PubMedCrossRefGoogle Scholar
  31. Kenny, J., Booth, A.G., George, S.G., Ingram, J., Kershaw, D., Wood, E.J., and Young, A.R., 1976, Dipeptidyl peptidase IV, a kidney brush border serine peptidase. Biochem. J. 155: 169–182.Google Scholar
  32. Kiyama, M., Hayakawa, M., Shiroza, T., Nakamura, S., Takeuchi, A., Masamoto, Y., and Abiko, Y., 1998, Sequence analysis of the Porphyromonas gingivalis dipeptidyl peptidase IV gene. Biochim. Biophys. Acta 1396: 39–46.PubMedCrossRefGoogle Scholar
  33. Kojima, K., Kinoshita, H., Kato, T., Nagatsu, T., Takada, K., and Sakakibara, S., 1979, A new and highly sensitive fluorescence assay for collagenase-like peptidase activity. Anal Biochem. 100: 43–50.PubMedCrossRefGoogle Scholar
  34. Küllertz, G., Fischer, G., and Barth, A., 1978, Beiträge zum Katalysemechanismus der Dipeptidyl Peptidase IV. Acta Biol Med. Ger. 37: 559–567.PubMedGoogle Scholar
  35. Kreil, G., Haiml, L., and Suchane, K.G., 1980, Stepwise cleavage of the Pro-part of promelittin by dipeptidyl peptidase IV. Evidence for a new type of precursor-product conversion. Eur. J. Biochem. 111: 49–58.PubMedCrossRefGoogle Scholar
  36. Lendeckel, U., Wex, T., Reinhold, D., Kähne, T., Frank, R., Faust, J., Neubert, K., and Ansorge, S., 1996, Induction of the membrane alanyl aminopeptidase gene and surface expression in human T-cells by mitogenic activation. Biochem. J. 319: 817–821.PubMedGoogle Scholar
  37. Leytus, S.P., Melhado, L.L., and Mangel, W.F., 1983a, Rhodamine-based compounds as fluorogenic substrates for serine proteinases. Biochem. J. 209:299–307.PubMedGoogle Scholar
  38. Leytus, S.P., Peterson, W.L., and Mangel, W.F., 1983b, New class of sensitive and selective fluorogenic substrates for serine proteinases. Amino acid and dipeptide derivatives of rhodamine. Biochem. J. 215: 253–260.PubMedGoogle Scholar
  39. Lojda, Z., 1977, Studies on glycylproline naphthylamidase. I. Lymphocytes. Histochemistry 54: 299–309.PubMedCrossRefGoogle Scholar
  40. Lojda, Z., 1979, Enzyme histochemistry, a laboratory manual. Springer-Verlag Berlin, Heidelberg, New York, p. 190.CrossRefGoogle Scholar
  41. Look, A.T., Ashmun, R.A., Shapiro, L.H., and Peiper, S.C., 1989, Human myeloid plasma membrane glycoprotein CD 13 (gpl50) is identical to aminopeptidase N. J. Clin. Invest. 83: 1299–1307.PubMedCrossRefGoogle Scholar
  42. Lorey, S., Faust, J., Hermanns, U., Bühling, F., Ansorge, S., and Neubert, K., 1997, New fluorogenic dipeptidyl peptidase IV/CD26 substrates and inhibitors. Adv. Exp. Med. Biol. 421: 157–160.PubMedGoogle Scholar
  43. Lorey, S., Faust, F., Hermanns, U., and Neubert, K., 1998, New fluorogenic substrates and inhibitors for dipeptidylpeptidase IV. InPeptides 1996 (Proc. 24th Eur. Peptide Symp.) (R. Ramage and R. Epton, eds.), Mayflower Scientific Ltd., England, pp. 595–596.Google Scholar
  44. Lorey, S., 1999, PhD Thesis Fluorogenic substrates and inhibitors for the detection ofDPIV activity on immune cells. Martin-Luther-University Halle-Wittenberg, GermanyGoogle Scholar
  45. Lucius, R., Sievers, J., and Mentlein, R., 1995, Enkephalin metabolism by microglia aminopeptidase N(CD13). J. Neurochem. 64: 1841–1847.PubMedCrossRefGoogle Scholar
  46. Martin, R.A., Cleary, D.L., Guido, D.M., Zurcher-Neely, H.A., and Kubiak, T.M., 1993, Dipeptidyl peptidase IV (DP IV) from pig kidney cleaves analogs of bovine growth hormone-releasing factor (bGRF) modified at position 2 with Ser, Thr or Val. Extended DPP IV substrate specificity? Biochim. Biophys. Acta 1164: 252–260.PubMedCrossRefGoogle Scholar
  47. Matsas, R., Stephensen, S.L., Hryszko, J., Kenny, A.J., and Turner, A.J., 1985, The metabolism of neuropeptides. Phase separation of synaptic membrane preparation with Triton X-l14 reveals the presence of aminopeptidase N. Biochem. J. 231: 445–449.PubMedGoogle Scholar
  48. McDonald, J.K. and Barrett, A.J., 1986, Mammalian proteases, Vol. 2: Exopeptidases. Academic Press, London, p. 59.Google Scholar
  49. Mentlein, R., 1988, Proline residues in the maturation and degradation of peptide hormones and neuropeptides. FEBS Lett. 234: 251–256.PubMedCrossRefGoogle Scholar
  50. Mentlein, R., 1999, Dipeptidyl-peptidase IV (CD26) - role in the inactivation of regulatory peptides. Regul. Pept. 85: 9–24.PubMedCrossRefGoogle Scholar
  51. Miller, R. and Lacefield; W., 1979, Specific inhibitors of aminopeptidase M relationship to anti-inflammatory activity. Biochem. Pharmacol. 28: 673–675.PubMedCrossRefGoogle Scholar
  52. Mrestani-Klaus, C., Brandt, W., Faust, J., Hermanns, U., Lorey, S., and Neubert, K., 1998, Structural studies of rhodamine 110 peptide derivatives representing a new class of fluorogenic substrates for dipeptidyl peptidase IV (DP IV). In Peptides 1996 (Proc. 24th Eur. Peptide Symp.) (R. Ramage and R. Epton, eds.), Mayflower Scientific Ltd., England, pp. 663–664.Google Scholar
  53. Nagatsu, T., Hino, M., Fuyamada, H., Hayakawa, T., Sakakibara, S., Nakagawa, Y., and Takemoto, T., 1976, New chromogenic substrates for X-prolyl-dipeptidyl aminopeptidase. Anal. Biochem. 74: 466–476.PubMedCrossRefGoogle Scholar
  54. Olsen, J., Cowell, G.M., Königshofer E., Danielsen, E.M., Möller, J., Laustsen, L., Hansen, O.C., Welinder, K.G., Engberg, J., and Hunziker, W, 1988, Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA. FEBS Lett. 238: 307–314.PubMedCrossRefGoogle Scholar
  55. Oravecz, T., Roderiques, G., Gorrell, M.D., Ditto, M., Nguyen, N. Y., Boykins, R., Unsworth, E., and Norcross, A., 1997, Regulation of the receptor specificity and function of the chemokine Rantes (regulated on activation normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J. Exp. Med. 186: 1865–1872.PubMedCrossRefGoogle Scholar
  56. Pfleiderer, G., 1970, Particle-bound aminopeptidase from pig kidney. Meth. Enzymol. XIX: 514–521.CrossRefGoogle Scholar
  57. Plakidou-Dymock, S. and Mc Givan, J.D., 1993, The oligomeric structure of renal aminopeptidase N from bovine brush-border membrane vesicles. Biochim. Biophys. Acta 1145: 105–112.PubMedCrossRefGoogle Scholar
  58. Proost, P., De Meester, I., Schols, D., Struyf, S., Lambeir, A.-M., Wuyts, A., Opdenakker, G., De Clercq, E., Scharpé, S., and Van Damme, J., 1998, Ammoterminal truncation of chemokines by CD26/dipeptidyl peptidase IV. J. Biol Chem. 273: 7222–7227.PubMedCrossRefGoogle Scholar
  59. Püschel, G., Mentlein, R., and Heymann, E., 1982, Isolation and characterisation of dipeptidyl peptidase IV from human placenta. Eur. J. Biochem. 126: 359–365.PubMedCrossRefGoogle Scholar
  60. Rahfeld, J., Schutkowski, M., Faust, J., Neubert, K., Barth, A., and Heins, J., 1991, Extended investigations of the substrate specificity of dipeptidyl peptidase IV from pig kidney. Biol. Chem. Hoppe-Seyler 372: 313–318.PubMedCrossRefGoogle Scholar
  61. Rawlings, N.D. and Barrett, A.J., 1995, Evolutionary families of metallopeptidases. Meth. Enzymol. 248: 183–228.PubMedCrossRefGoogle Scholar
  62. Reisenauer, A.M. and Gray, G.M., 1985, Abrupt induction of a membrane digestive enzyme by its intraintestinal substrate. Science 227: 70–72.PubMedCrossRefGoogle Scholar
  63. Saiki, I., Fujii, H., Yoneda, J., Abe, F., Nakajima, M., Tsuruo, T., and Azuma, I., 1993, Role of aminopeptidase N (CD 13) in tumor-cell invasion and extracellular matrix degradation. Int. J. Cancer 54: 137–143.PubMedCrossRefGoogle Scholar
  64. Schön, E. and Ansorge, S., 1990, Dipeptidyl peptidase IV in the immune system. Cytofluorographic evidence for induction of the enzyme on activated T lymphocytes. Biol. Chem. Hoppe-Seyler 371: 699–705.PubMedCrossRefGoogle Scholar
  65. Schutkowski, M., 1991, PhD Thesis Investigations of the substrate specificity of prolin- specific peptidases. Martin-Luther-University Halle-Wittenberg, Germany.Google Scholar
  66. Schutkowski, M., Neubert, K., and Fischer, G., 1994, Influence on proline-specific enzymes of a substrate containing the tmoxoaminoacyl-prolylpeptide bond. Eur. J. Biochem. 221: 455–461.PubMedCrossRefGoogle Scholar
  67. Söderberg, C, Giugni, T.D., Zaia, J.A., Larsson, S., Wahlberg, J.M., and Möller, E., 1993,CD 13 (human aminopeptidase N) mediates human cytomegalovirus infection. J. Virol. 67:6576–6585.PubMedGoogle Scholar
  68. Stano, J., Kovacs, P., Psenak, M., Gajdos, J., Erdelsky, K., Kakoniova, D., and Neubert, K.,1997, Distribution of dipeptidyl peptidase IV in organs and cultures of poppy plants Papaver somniferum L. cv. Amarin. Pharmazie 52: 319–321.Google Scholar
  69. Tsakalidou, E., Anastasiou, R., Papadimitriou, K., Manolopoulou, E., and Kalantzopoulos,G., 1998, Purification and characterisation of an intracellular X-prolyl-dipeptidyl aminopeptidase from Streptococcus thermophilus ACA-DC 4. J. Biotechnol 59: 203–211.CrossRefGoogle Scholar
  70. Ulbricht, B., Spiess, E., Schwartz-Albiez, R., and Ebert, W., 1995, Quantification of intracellular cathepsin activities in human lung tumor cell lines by flow cytometry. Biol.Chem. Hoppe-Seyler 376: 407–414.PubMedCrossRefGoogle Scholar
  71. Van Noorden, C.J.F., Boonacker, E., Bissell, E.R., Meijer, A.J., Van Marie, J., and Smith,R.E., 1997, Ala-Pro-Cresyl violet, a fluorogenic substrate for the analysis of kinetic parameters of dipeptidyl peptidase IV (CD26) in individual living rat hepatocytes. Anal.Biochem. 252: 71–77.PubMedCrossRefGoogle Scholar
  72. Wolf, B., Fischer, G., and Barth, A., 1978, Kinetische Untersuchungen an der Dipeptidyl Peptidase IV. Acta Biol Med. Ger. 37: 409–420.PubMedGoogle Scholar
  73. Wrenger, S., Reinhold, D., Hoffmann, T., Kraft, M., Frank, R., Faust, J., Neubert, K., and Ansorge, S., 1996, The N-terminal X-X-Pro sequence of the HIV-1 Tat protein is important for the inhibition of dipeptidyl peptidase IV (DP IV/CD26) and the suppression of mitogen-induced proliferation of human T cells. FEBSLett. 383: 145–149.CrossRefGoogle Scholar
  74. Wrenger, S., Faust, J., Mrestani-Klaus, C, Fengler, A., Stöckel-Maschek, A., Lorey, S.,Kähne, T., Brandt, W., Neubert, K., Ansorge, S., and Reinhold, D., 2000, Down-regulation of T cell activation following inhibition of dipeptidyl peptidase IV/CD26 by the N-terminal part of the thromboxane A2 receptor. J. Biol. Chem. 275: 22180–22186.PubMedGoogle Scholar
  75. Xu, Y., Wellner, D., and Scheinberg, D.A., 1995, Substance P and bradykinin are natural inhibitors of CD13/Aminopeptidase N. Biochem. Biophys. Res. Commun. 208: 664–674.PubMedCrossRefGoogle Scholar
  76. Yaeger, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., and Holmes, K.V., 1992, Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357: 420–422.CrossRefGoogle Scholar
  77. Yoshimoto, T. and Tsuru, D., 1982, Proline-specific dipeptidyl aminopeptidase from Flavobacterium meningosepticum. J. Biochem. 91: 1899–1906.PubMedGoogle Scholar
  78. Zevaco, C, Monnet, V., and Gripon, J.-C, 1990, Intracellular X-prolyl dipeptidyl peptidase fromLactococcus lactis spp. lactis: Purification and properties. J. Appl. Bacteriol. 68: 357–366.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Carmen Mrestani-Klaus
    • 1
  • Susan Lorey
    • 1
  • Jürgen Faust
    • 1
  • Frank Bühling
    • 2
  • Klaus Neubert
    • 1
  1. 1.Department of Biochemistry/Biotechnology, Institute of BiochemistryMartin-Luther-University Halle-WittenbergHalleGermany
  2. 2.Institute of ImmunologyOtto-von-Guericke-University Magdeburg,MagdeburgGermany

Personalised recommendations