Advertisement

Mechanical Ventilation of Mice

  • Lothar A. Schwarte
  • Can Ince
Chapter
  • 130 Downloads
Part of the Basic Science for the Cardiologist book series (BASC, volume 16)

Abstract

Due to the expanding interest in mouse research (e.g. the emerging field of functional genomics), there is a growing need for (patho-)physiological relevant, stable in vivo murine models, often requiring ventilatory support. Numerous techniques available forin vivo research of larger animals have been miniaturized and adapted, ranging from vascular catheterisation to measurement of cardiac output and organ blood flows. However, a major difficulty in this process of miniaturization is encountered at the level of mechanical ventilation, mainly because of the small size of mice and the technically demanding murine breathing pattern. To summarize the current state of mechanical mouse ventilation, we have updated our recent review on this subject1 and have included new data from others and from our own studies on this topic. The following aspects of murine respiratory support will be discussed: Murine respiratory physiology, indications of when to use mechanical ventilation in mice, airway access, types of ventilation of the mouse, and monitoring and side effects of mechanical ventilation.

Keywords

Mechanical Ventilation Continuous Positive Airway Pressure Airway Pressure Endotracheal Tube Spontaneous Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. 1.
    Schwarte LA, Zuurbier CJ, Ince C: Mechanical ventilation of mice. Basic Res Cardiol 2000; 95:510–520.PubMedCrossRefGoogle Scholar
  2. 2.
    Enhorning G, van Schaik S, Lundgren C, et al: Whole-body plethysmography, does it measure tidal volume of small animals? Can J Physiol Pharmacol 1998; 76:945–951PubMedCrossRefGoogle Scholar
  3. 3.
    Tankersley CG, Fitzgerald RS, Kleeberger SR: Differential control of ventilation among inbred strains of mice. Am J Physiol 1994; 267:R1371–1377PubMedGoogle Scholar
  4. 4.
    Tankersley CG: Genetic control of ventilation: what are we learning from murine models? Curr Opin Pulm Med 1999; 5:344–348PubMedCrossRefGoogle Scholar
  5. 5.
    Dauger S, Nsegbe E, Vardon G, et al: The effects of restraint on ventilatory responses to hypercapnia and hypoxia in adult mice. Respir Physiol 1998; 112:215–225PubMedCrossRefGoogle Scholar
  6. 6.
    Kolandaivelu K, Poon CS: A miniature mechanical ventilator for newborn mice. J Appl Physiol 1998; 84:733–739PubMedGoogle Scholar
  7. 7.
    Kuwaki T, Cao WH, Kurihara Y, et al: Impaired ventilatory responses to hypoxia and hypercapnia in mutant mice deficient in endothelin-1. Am J Physiol 1996; 270:R1279–1286Google Scholar
  8. 8.
    Burton MD, Kawashima A, Brayer JA, et al: RET proto-oncogene is important for the development of respiratory CO2 sensitivity. J Auton Nery Syst 1997; 63:137–143CrossRefGoogle Scholar
  9. 9.
    Mortola JP, Rezzonico R, Lanthier C: Ventilation and oxygen consumption during acute hypoxia in newborn mammals: a comparative analysis. Respir Physiol 1989; 78:31–43PubMedCrossRefGoogle Scholar
  10. 10.
    Nielsen GD, Petersen SH, Vinggaard AM, et al: Ventilation, CO2 production, and CO2 exposure effects in conscious, restrained CF-1 mice. Pharmacol Toxicol 1993; 72:163–168PubMedCrossRefGoogle Scholar
  11. 11.
    Flecknell PA: Anaesthesia of animals for biomedical research. Br J Anaesth 1993; 71:885–894PubMedCrossRefGoogle Scholar
  12. 12.
    Uechi M, Asai K, Osaka M, et al: Depressed heart rate variability and arterial baroreflex in conscious transgenic mice with overexpression of cardiac Gsalpha. Circ Res 1998; 82:416–423PubMedCrossRefGoogle Scholar
  13. 13.
    Fairchild GA: Measurement of respiratory volume for virus retention studies in mice. Appl Microbiol 1972; 24:812–818PubMedGoogle Scholar
  14. 14.
    Furukawa S, MacLennan MJ, Keller BB: Hemodynamic response to anesthesia in pregnant and nonpregnant ICR mice. Lab Anim Sci 1998; 48:357–363PubMedGoogle Scholar
  15. 15.
    Nagase T, Matsui H, Aoki T, et al: Lung tissue behavior in the mouse during constriction induced by methacholine and endothelin-1. J Appl Physiol 1996; 81:2373–2378PubMedGoogle Scholar
  16. 16.
    Suzuki Y, Robertson B, Fujita Y, et al: Lung protein leakage in respiratory failure induced by a hybridoma making monoclonal antibody to the hydrophobic surfactant-associated polypeptide SP-B. Int J Exp Pathol 1992; 73:325–333PubMedGoogle Scholar
  17. 17.
    Ewart S, Levitt R, Mitzner W: Respiratory system mechanics in mice measured by end-inflation occlusion. J Appl Physiol 1995; 79:560–566PubMedGoogle Scholar
  18. 18.
    Lahiri S: Blood oxygen affinity and alveolar ventilation in relation in body weight in mammals. Am J Physiol 1975; 229:529–536PubMedGoogle Scholar
  19. 19.
    O’Donnell C P, Schaub CD, Haines AS, et al: Leptin prevents respiratory depression in obesity. Am J Respir Crit Care Med 1999; 159:1477–1484PubMedGoogle Scholar
  20. 20.
    Murakami K, Kondo T, Kawase M, et al: The development of a new mouse model of global ischemia: focus on the relationships between ischemia duration, anesthesia, cerebral vasculature, and neuronal injury following global ischemia in mice. Brain Res 1998; 780:304–310PubMedCrossRefGoogle Scholar
  21. 21.
    Dalkara T, Irikura K, Huang Z, et al: Cerebrovascular responses under controlled and monitored physiological conditions in the anesthetized mouse. J Cereb Blood Flow Metab 1995; 15:631–638PubMedCrossRefGoogle Scholar
  22. 22.
    Tankersley CG, O’Donnell C, Daood MJ, et al: Leptin attenuates respiratory complications associated with the obese phenotype. J Appl Physiol 1998; 85:2261–2269PubMedGoogle Scholar
  23. 23.
    Balkowiec A, Katz DM: Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice. J Physiol (Lond) 1998; 510:527–533CrossRefGoogle Scholar
  24. 24.
    Polotsky VY, Wilson JA, Haines AS, et al: The impact of insulin-dependent diabetes on ventilatory control in the mouse. Am J Respir Crit Care Med 2001; 163:624–632PubMedGoogle Scholar
  25. 25.
    Tankersley CG: Selected contribution: variation in acute hypoxic ventilatory response is linked to mouse chromosome 9. J Appl Physiol 2001; 90:1615–1622; discussion 1606PubMedGoogle Scholar
  26. 26.
    Tankersley CG, Haxhiu MA, Gauda EB: Differential CO(2)-induced c-fos gene expression in the nucleus tractus solitarii of inbred mouse strains. J Appl Physiol 2002; 92:1277–1284PubMedGoogle Scholar
  27. 27.
    Georgakopoulos D, Mitzner WA, Chen CH, et al: In vivo murine left ventricular pressure-volume relations by miniaturized conductance micromanometry. Am J Physiol 1998; 274:H1416–1422PubMedGoogle Scholar
  28. 28.
    Guo Y, Wu WJ, Qiu Y, et al: Demonstration of an early and a late phase of ischemic preconditioning in mice. Am J Physiol 1998; 275:H1375–1387PubMedGoogle Scholar
  29. 29.
    Kubota T, Mahler CM, McTiernan CF, et al: End-systolic pressure-dimension relationship of in situ mouse left ventricle. J Mol Cell Cardiol 1998; 30:357–363PubMedCrossRefGoogle Scholar
  30. 30.
    Sakamoto J, Miura T, Tsuchida A, et al: Reperfusion arrhythmias in the murine heart: their characteristics and alteration after ischemic preconditioning. Basic Res Cardiol 1999; 94:489–495PubMedCrossRefGoogle Scholar
  31. 31.
    Kravchuk LA: [Method of artificial respiration in curarized mice]. Biull Eksp Biol Med 1966; 31:117–119PubMedGoogle Scholar
  32. 32.
    Brady JF, Newsom BD: Effect of positive pressure breathing on the vibration tolerance of the mouse. Aerosp Med 1966; 37:40–45PubMedGoogle Scholar
  33. 33.
    von Bethmann AN, Brasch F, Nusing R, et al: Hyperventilation induces release of cytokines from perfused mouse lung. Am J Respir Crit Care Med 1998; 157:263–272Google Scholar
  34. 34.
    De Sanctis GT, Mehta S, Kobzik L, et al: Contribution of type I NOS to expired gas NO and bronchial responsiveness in mice. Am J Physiol 1997; 273:L883–888PubMedGoogle Scholar
  35. 35.
    Yasue M, Yokota T, Suko M, et al: Comparison of sensitization to crude and purified house dust mite allergens in inbred mice. Lab Anim Sci 1998; 48:346–352PubMedGoogle Scholar
  36. 36.
    Paton JF, Butcher JW: Cardiorespiratory reflexes in mice. J Auton Nery Syst 1998; 68:115–124CrossRefGoogle Scholar
  37. 37.
    Schwarte LA, Zuurbier CJ, Ince C: Breath-by-breath mainstream capnography using a novel mechanical ventilator for mice. Eur J Anaesthesiol 2002; 19:2Google Scholar
  38. 38.
    Gronski T, Jr., Lum E, Campbell J, et al: A murine model of volutrauma: potential contribution of inflammatory cell proteases to lung injury. Chest 1999; 116:28SPubMedCrossRefGoogle Scholar
  39. 39.
    Li Y, Erzurumlu RS, Chen C, et al: Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDARI knockout mice. Cell 1994; 76:427–437PubMedCrossRefGoogle Scholar
  40. 40.
    Kass DA, Hare JM, Georgakopoulos D: Murine cardiac function: a cautionary tail. Circ Res 1998; 82:519–522PubMedCrossRefGoogle Scholar
  41. 41.
    Schmidt-Nielsen, Larimer: Oxygen dissociation curves of mammalian blood in relation to body size. Am J Physiol 1958; 195:424–428Google Scholar
  42. 42.
    Khandelwal SR, Randad RS, Lin PS, et al: Enhanced oxygenation in vivo by allosteric inhibitors of hemoglobin saturation. Am J Physiol 1993; 265:H1450–1453PubMedGoogle Scholar
  43. 43.
    Petschow R, Petschow D, Bartels R, et al: Regulation of oxygen affinity in blood of fetal, newborn and adult mouse. Respir Physiol 1978; 35:271–282PubMedCrossRefGoogle Scholar
  44. 44.
    Shimizu S, Sakata S, Enoki Y, et al: Temporal changes of plasma erythropoietin level in hypobaric hypoxic mice and the influence of an altered blood oxygen affinity. Jpn J Physiol 1989; 39:833–846PubMedCrossRefGoogle Scholar
  45. 45.
    Schwarte LA, Elbers PWG, Emons M, et al.: Ventilation with PEEP reduces intestinal functional capillary density. Intensive Care Med 2000; S3 343 (abstract)Groner W, Winkelman JW, Harris AG, et al: Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 1999; 5:1209–1212CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Lothar A. Schwarte
    • 1
    • 2
  • Can Ince
    • 1
  1. 1.Department of Physiology, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
  2. 2.Clinic of AnesthesiologyHeinrich-Heine-University DüsseldorfGermany

Personalised recommendations