Skip to main content

Role of the Phosphoinositide 3-Kinase Pathway in Cardiac Hypertrophy

  • Chapter
Pathophysiology of Cardiovascular Disease

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

  • 305 Accesses

Summary

Phosphoinositide 3-kinase (PI3K) is a lipid kinase that catalyzes the addition of a phosphate molecule specifically to the 3-position of the inositol ring of phosphoinositides. Biochemical studies using cultured mammalian cells show that PI3K is activated by receptor tyrosine kinases that include insulin or insulin-like growth factors, and PI3K regulates the activities of several downstream molecules such as Akt, p70 ribosomal S6 kinase, and glycogen synthase kinase-3β. The mammalian target of rapamycin, an intracellular target of the immunosuppressant rapamycin, interacts with the PI3K pathway. PI3K regu lates diverse cellular activities, including growth, DNA synthesis, apoptosis, and cytoskeletal organization in cultured cells. Recent genetic studies in Drosophila reveal that the PI3K pathway regulates organ and body size in the developmental process in flies. Various agonists or stimuli activate PI3K or its downstream effectors in cultured myocytes and heart tissue. Perturbation of the PI3K pathway significantly modulates the phenotype of cultured myocytes and the intact heart. Since agonists that activate PI3K, such as growth hormone, have been implicated in the treatment of heart failure, further studies elucidating the role of PI3K and its downstream effectors in the heart may be useful for the development of new strategies to treat cardiac hypertrophy and failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. 1990. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566.

    Article  PubMed  CAS  Google Scholar 

  2. Molkentin JD, Dorn IG, 2nd. 2001. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 63:391–426.

    Article  PubMed  CAS  Google Scholar 

  3. Sadoshima J, Izumo S. 1997. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59:551–571.

    Article  PubMed  CAS  Google Scholar 

  4. Fruman DA, Meyers RE, Cantlev LC. 1998. Phosphoinositide kinases. Annu Rev Biochem 67:481–507.

    Article  PubMed  CAS  Google Scholar 

  5. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD. 2001. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602.

    Article  PubMed  CAS  Google Scholar 

  6. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. 1997. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 22:267–272.

    Article  PubMed  CAS  Google Scholar 

  7. Naga Prasad SV, Esposito G, Mao L, Koch WJ, Rockman HA. 2000. Gbetagamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem 275:4693–4698.

    Article  PubMed  CAS  Google Scholar 

  8. Naga Prasad SV, Barak LS, Rapacciuolo A, Caron MG, Rockman HA. 2001. Agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane by beta-adrenergic receptor kinase 1. A role in receptor sequestration. J Biol Chem 276:18953–18959.

    Article  PubMed  CAS  Google Scholar 

  9. Maehama T, Dixon JE. 1998. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378.

    Article  PubMed  CAS  Google Scholar 

  10. Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA. 1991. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA 88:4171–4175.

    Article  PubMed  CAS  Google Scholar 

  11. Coffer PJ, Woodgett JR. 1991. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families [published erratum appears in Eur J Biochem 1992 May 1;205(3):1217]. Eur J Biochem 201:475–481.

    Article  PubMed  CAS  Google Scholar 

  12. Chan TO, Rittenhouse SE, Tsichlis PN. 1999. Akt/PKB other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68:965–1014.

    Article  PubMed  CAS  Google Scholar 

  13. Vanhaesebroeck B, Alessi DR. 2000. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346:561–576.

    Article  PubMed  CAS  Google Scholar 

  14. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. 1997. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269.

    Article  PubMed  CAS  Google Scholar 

  15. Toker A, Newton AC. 2000. Akt/Protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem 275:8271–8274.

    Article  PubMed  CAS  Google Scholar 

  16. Yano S, Tokumitsu H, Soderling TR. 1998. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396:584–587.

    Article  PubMed  CAS  Google Scholar 

  17. Soler RM, Egea J, Mintenig GM, Sanz-Rodriguez C, Iglesias M, Cornelia JX. 1998. Calmodulin is involved in membrane depolarization-mediated survival of motoneurons by phosphatidylinositol-3 kinase- and MAPK-independent pathways. J Neurosci 18:1230–1239.

    PubMed  CAS  Google Scholar 

  18. Frame S, Cohen P. 2001. GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16.

    Article  PubMed  CAS  Google Scholar 

  19. Hardt SE, Sadoshima J. 2002. Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ Res 90:1055–1063.

    Article  PubMed  CAS  Google Scholar 

  20. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789.

    Article  PubMed  CAS  Google Scholar 

  21. Ballou LM, Tian PY, Lin HY, Jiang YP, Lin RZ. 2001. Dual regulation of glycogen synthase kinase-3beta by the alpha1A-adrenergic receptor. J Biol Chem 276:40910–40916.

    Article  PubMed  CAS  Google Scholar 

  22. Fang X, Yu SX, Lu Y, Bast RC, Jr., Woodgett JR, Mills GB. 2000. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA 97:11960–11965.

    Article  PubMed  CAS  Google Scholar 

  23. Clemens MG. 1996. Protein kinases that phosphorylate eIF2 and eIF2B, and their role in eukaryotic cell translational control. Cold Spring Harbor Laboratory Press, NY.

    Google Scholar 

  24. Dufner A, Thomas G. 1999. Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 253:100–109.

    Article  PubMed  CAS  Google Scholar 

  25. Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC. 1998. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. Embo J 17:6649–6659.

    Article  PubMed  CAS  Google Scholar 

  26. Burgering BM, Coffer PJ. 1995. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602.

    Article  PubMed  CAS  Google Scholar 

  27. Dufner A, Andjelkovic M, Burgering BM, Hemmings BA, Thomas G. 1999. Protein kinase B localization and activation differentially affect S6 kinase 1 activity and eukaryotic translation initiation factor 4E- binding protein 1 phosphorylation. Mol Cell Biol 19:4525–4534.

    PubMed  CAS  Google Scholar 

  28. Conus NM, Hemmings BA, Pearson KB. 1998. Differential regulation by calcium reveals distinct signaling requirements for the activation of Akt and p70S6k. J Biol Chem 273:4776–4782.

    Article  PubMed  CAS  Google Scholar 

  29. Ballou LM, Cross ME, Huang S, McReynolds EM, Zhang BX, Lin RZ. 2000. Differential regulation of the phosphatidylinositol 3-kinase/Akt and p70 S6 kinase pathways by the alpha(1A)-adrenergic receptor in rat-1 fibroblasts. J Biol Chem 275:4803–4809.

    Article  PubMed  CAS  Google Scholar 

  30. Saunders RN, Metcalfe MS, Nicholson ML. 2001. Rapamycin in transplantation: a review of the evidence. Kidney Int 59:3–16.

    Article  PubMed  CAS  Google Scholar 

  31. Gingras A-C, Raught B, Sonenberg N. 2001. Regulation of translation initiation by FRAP/mTOR. Genes and Development 15:807–826.

    Article  PubMed  CAS  Google Scholar 

  32. Scott PH, Brunn GJ, Kohn AD, Roth KA, Lawrence JC, Jr. 1998. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci U S A 95:7772–7777.

    Article  PubMed  CAS  Google Scholar 

  33. Peterson RT, Beal PA, Comb MJ, Schreiber SL. 2000. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 275:7416–7423.

    Article  PubMed  CAS  Google Scholar 

  34. Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT. 2000. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60:3504–3513.

    PubMed  CAS  Google Scholar 

  35. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. 2001. Phosphatidic acid-mediated mito-genic activation of mTOR signaling. Science 294:1942–1945.

    Article  PubMed  CAS  Google Scholar 

  36. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. 2001. Mammalian TOR: a homeostatic ATP sensor. Science 294:1102–1105.

    Article  PubMed  CAS  Google Scholar 

  37. Schmelzle T, Hall MN. 2000. TOR, a central controller of cell growth. Cell 103:253–262.

    Article  PubMed  CAS  Google Scholar 

  38. Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N. 1998. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12:502–513.

    Article  PubMed  CAS  Google Scholar 

  39. Weinkove D, Leevers SJ. 2000. The genetic control of organ growth: insights from Drosophila. Curr Opin Genet Dev 10:75–80.

    Article  PubMed  CAS  Google Scholar 

  40. Chen C, Jack J, Garofalo RS. 1996. The Drosophila insulin receptor is required for normal growth. Endocrinology 137:846–856.

    Article  PubMed  CAS  Google Scholar 

  41. Leevers SJ, Weinkove D, MacDougall LK, Hafen E, Waterfield MD. 1996. The Drosophila phosphoinositide 3-kinase Dpi 10 promotes cell growth. Embo J 15:6584–6594.

    PubMed  CAS  Google Scholar 

  42. Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E. 1999. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97:865–875.

    Article  PubMed  CAS  Google Scholar 

  43. Montagne J, Stewart MJ, Stocker H, Hafen E, Kozuma SC, Thomas G. 1999. Drosophila S6 kinase: a regulator of cell size. Science 285:2126–2129.

    Article  PubMed  CAS  Google Scholar 

  44. Baker J, Liu JP, Robertson EJ, Efstratiadis A. 1993. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73–82.

    PubMed  CAS  Google Scholar 

  45. DeChiara TM, Efstratiadis A, Robertson EJ. 1990. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78–80.

    Article  PubMed  CAS  Google Scholar 

  46. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. 1993. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72.

    PubMed  CAS  Google Scholar 

  47. Araki E, Lipes MA, Patti ME, Bruning JC, Haag Br, Johnson RS, Kahn CR. 1994. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372:186–190.

    Article  PubMed  CAS  Google Scholar 

  48. Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S, et al. 1994. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 [see comments]. Nature 372:182–186.

    Article  PubMed  CAS  Google Scholar 

  49. Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, et al. 1998. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904.

    Article  PubMed  CAS  Google Scholar 

  50. Aikawa R, Nawano M, Gu Y, Katagiri H, Asano T, Zhu W, Nagai R, Komuro I. 2000. Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation 102:2873–2879.

    Article  PubMed  CAS  Google Scholar 

  51. Foncea R, Andersson M, Ketterman A, Blakesley V, Sapag-Hagar M, Sugden PH, LeRoith D, Lavandero S. 1997. Insulin-like growth factor-I rapidly activates multiple signal transduction pathways in cultured rat cardiac myocytes. J Biol Chem 272:19115–19124.

    Article  PubMed  CAS  Google Scholar 

  52. Schluter KD, Simm A, Schafer M, Taimor G, Piper HM. 1999. Early response kinase and PI 3-kinase activation in adult cardiomyocvtes and their role in hypertrophy. Am J Physiol 276:H1655–1663.

    PubMed  CAS  Google Scholar 

  53. Oh H, Fujio Y, Kunisada K, Hirota H, Matsui H, Kishimoto T, Yamauchi-Takihara K. 1998. Activation of phosphatidylinositol 3-kinase through glycoprotein 130 induces protein kinase B and p70 S6 kinase phosphorylation in cardiac myocytes. J Biol Chem 273:9703–9710.

    Article  PubMed  CAS  Google Scholar 

  54. Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT. 2000. The beta-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res 87:1172–1179.

    Article  PubMed  CAS  Google Scholar 

  55. Wu W, Lee WL, Wu YY, Chen D, Liu TJ, Jang A, Sharma PM, Wang PH. 2000. Expression of constitutively active phosphatidylinositol 3-kinase inhibits activation of caspase 3 and apoptosis of cardiac muscle cells. J Biol Chem 275:40113–40119.

    Article  PubMed  CAS  Google Scholar 

  56. Craig R, Wagner M, McCardle T, Craig AG, Glembotski CC. 2001. The cytoprotective effects of the glycoprotein 130 receptor-coupled cytokine, cardiotrophin-1, require activation of NF-kappa B. J Biol Chem 276:37621–37629.

    Article  PubMed  CAS  Google Scholar 

  57. Hiraoka E, Kawashima S, Takahashi T, Rikitake Y, Kitamura T, Ogawa W, Yokoyama M. 2001. TNF-alpha induces protein synthesis through PI3-kinase-Akt/PKB pathway in cardiac myocytes. Am J Physiol Heart Circ Physiol 280:H1861–1868.

    PubMed  CAS  Google Scholar 

  58. Badorff C, Ruetten H, Mueller S, Stahmer M, Gehring D, Jung F, Ihling C, Zeiher AM, Dimmeler S. 2002. Fas receptor signaling inhibits glycogen synthase kinase 3 beta and induces cardiac hypertrophy following pressure overload. J Clin Invest 109:373–381.

    PubMed  CAS  Google Scholar 

  59. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. 2001. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A 98:1607–1612.

    Article  PubMed  CAS  Google Scholar 

  60. Petroff MG, Kim SH, Pepe S, Dessy C, Marban E, Balligand JL, Sollott SJ. 2001. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3:867–873.

    Article  PubMed  CAS  Google Scholar 

  61. Sadoshima J, Izumo S. 1995. Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circ Res 77:1040–1052.

    Article  PubMed  CAS  Google Scholar 

  62. Boluyt MO, Zheng JS, Younes A, Long X, O’Neill L, Silverman H, Lakatta EG, Crow MT. 1997. Rapamycin inhibits alpha 1-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes. Evidence for involvement of p70 S6 kinase. Circ Res 81:176–186

    Article  PubMed  CAS  Google Scholar 

  63. Baliga RR, Pimental DR, Zhao YY, Simmons WW, Marchionni MA, Sawyer DB, Kelly RA. 1999. NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70(S6K), and MEK-MAPK-RSK. Am J Physiol 277:H2026–2037.

    PubMed  CAS  Google Scholar 

  64. Simm A, Schluter K, Diez C, Piper HM, Hoppe J. 1998. Activation of p70(S6) kinase by beta-adrenoceptor agonists on adult cardiomyocytes. J Mol Cell Cardiol 30:2059–2067.

    Article  PubMed  CAS  Google Scholar 

  65. Haq S, Choukroun G, Kang ZB, Ranu H, Matsui T, Rosenzweig A, Molkentin JD, Alessandrini A, Woodgett J, Hajjar R, et al. 2000. Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 151:117–130.

    Article  PubMed  CAS  Google Scholar 

  66. Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J. 2000. The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 275:14466–14475.

    Article  PubMed  CAS  Google Scholar 

  67. Pham FH, Sugden PH, Clerk A. 2000. Regulation of protein kinase B and 4E-BP1 by oxidative stress in cardiac myocytes. Circ Res 86:1252–1258.

    Article  PubMed  CAS  Google Scholar 

  68. Tuxworth WJ, Jr., Wada H, Ishibashi Y, McDermott PJ. 1999. Role of load in regulating eIF-4F complex formation in adult feline cardiocytes. Am J Physiol 277.H1273–1282.

    PubMed  CAS  Google Scholar 

  69. Donohue TJ, Dworkin LD, Lango MN, Fliegner K, Lango RP, Benstein JA, Slater WR, Catanese VM. 1994. Induction of myocardial insulin-like growth factor-I gene expression in left ventricular hypertrophy. Circulation 89:799–809.

    Article  PubMed  CAS  Google Scholar 

  70. Neri Serneri GG, Boddi M, Modesti PA, Cecioni I, Coppo M, Padeletti L, Michelucci A, Colella A, Galanti G. 2001. Increased cardiac sympathetic activity and insulin-like growth factor-I formation are associated with physiological hypertrophy in athletes. Circ Res 89:977–982.

    Article  PubMed  CAS  Google Scholar 

  71. Serneri GG, Modesti PA, Boddi M, Cecioni I, Paniccia R, Coppo M, Galanti G, Simonetti I, Vanni S, Papa L, et al. 1999. Cardiac growth factors in human hypertrophy. Relations with myocardial contractility and wall stress. Circ Res 85:57–67.

    Article  PubMed  CAS  Google Scholar 

  72. Yamashita K, Kajstura J, Discher DJ, Wasserlauf BJ, Bishopric NH, Anversa P, Webster KA. 2001. Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor-1. Circ Res 88:609–614.

    Article  PubMed  CAS  Google Scholar 

  73. Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD. 2001. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677.

    Article  PubMed  CAS  Google Scholar 

  74. Kim CH, Cho YS, Chun YS, Park JW, Kim MS. 2002. Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res 90:E25–33.

    Article  PubMed  CAS  Google Scholar 

  75. Laser M, Kasi VS, Hamawaki M, Cooper Gt, Kerr CM, Kuppuswamy D. 1998. Differential activation of p70 and p85 S6 kinase isoforms during cardiac hypertrophy in the adult mammal. J Biol Chem 273:24610–24619.

    Article  PubMed  CAS  Google Scholar 

  76. Sanada S, Kitakaze M, Node K, Takashima S, Ogai A, Asanuma H, Sakata Y, Asakura M, Ogita H, Liao Y, et al. 2001. Differential subcellular actions of ACE inhibitors and AT(1) receptor antagonists on cardiac remodeling induced by chronic inhibition of NO synthesis in rats. Hypertension 38:404–411.

    Article  PubMed  CAS  Google Scholar 

  77. Ito H, Hiroe M, Hirata Y, Tsujino M, Adachi S, Shichiri M, Koike A, Nogami A, Marumo F. 1993. Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation 87:1715–1721.

    Article  PubMed  CAS  Google Scholar 

  78. Schwartzbauer G, Robbins J. 2001. The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival. J Biol Chem 276:35786–35793.

    Article  PubMed  CAS  Google Scholar 

  79. Morisco C, Seta K, Hardt SE, Lee Y, Vatner SF, Sadoshima J. 2001. Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. J Biol Chem 276:28586–28597.

    Article  PubMed  CAS  Google Scholar 

  80. Liu T, Lai H, Wu W, Chinn S, Wang PH. 2001. Developing a strategy to define the effects of insulin-like growth factor-1 on gene expression profile in cardiomyocytes. Circ Res 88:1231–1238.

    Article  CAS  Google Scholar 

  81. Reiss K, Cheng W, Ferber A, Kajstura J, Li P, Li B, Olivetti G, Homey CJ, Baserga R, Anversa P. 1996. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl Acad Sci U S A 93:8630–8635.

    Article  PubMed  CAS  Google Scholar 

  82. Belke DD, Betuing S, Tuttle MJ, Graveleau C, Young ME, Pham M, Zhang D, Cooksey RC, McClain DA, Litwin SE, et al. 2002. Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest 109:629—639.

    Google Scholar 

  83. Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley LC, Izumo S. 2000. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 19:2537–2548.

    Article  PubMed  CAS  Google Scholar 

  84. Franke TF, Kaplan DR, Cantley LC, Toker A. 1997. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–668.

    Article  PubMed  CAS  Google Scholar 

  85. Shioi T, McMullen JR, Rang PM, Douglas PS, Obata T, Franke TF, Cantley LC, Izumo S. 2002. Akt/Protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol 22:2799–2809.

    Article  PubMed  CAS  Google Scholar 

  86. Lembo G, Rockman HA, Hunter JJ, Steinmetz H, Koch WJ, Ma L, Prinz MP, Ross J, Jr., Chien KR, Powell-Braxton L. 1996. Elevated blood pressure and enhanced myocardial contractility in mice with severe IGF-1 deficiency. J Clin Invest 98:2648–2655.

    Article  PubMed  CAS  Google Scholar 

  87. Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM, Richardson JA, Hill JA, Olson EN. 2002. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 99:907–912.

    Article  PubMed  CAS  Google Scholar 

  88. Morgan HE, Gordon EE, Kira Y, Chua HL, Russo LA, Peterson CJ, McDermott PJ, Watson PA. 1987. Biochemical mechanisms of cardiac hypertrophy. Annu Rev Physiol 49:533–543.

    Article  PubMed  CAS  Google Scholar 

  89. Peterson MB, Lesch M. 1972. Protein synthesis and amino acid transport in the isolated rabbit right ventricular papillary muscle. Effect of isometric tension development. Circ Res 31:317–327.

    Article  PubMed  CAS  Google Scholar 

  90. Xenophontos XP, Gordon EE, Morgan HE. 1986. Effect of intraventricular pressure on protein synthesis in arrested rat hearts. Am J Physiol 251:C95–98.

    PubMed  CAS  Google Scholar 

  91. Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S. 1992. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem 267:10551–10560.

    PubMed  CAS  Google Scholar 

  92. Colao A, Marzullo P, Di Somma C, Lombardi G. 2001. Growth hormone and the heart. Clin Endocrinol (Oxf) 54:137–154.

    Article  CAS  Google Scholar 

  93. Fazio S, Cittadini A, Sabatini D, Merola B, Colao AM, Biondi B, Lombardi G, Sacca L. 1993. Evidence for biventricular involvement in acromegaly: a Doppler echocardiographic study. Eur Heart J 14:26–33.

    Article  PubMed  CAS  Google Scholar 

  94. Fazio S, Sabatini D, Capaldo B, Vigonto C, Giordano A, Guida R, Pardo F, Biondi B, Sacca L. 1996. A preliminary study of growth hormone in the treatment of dilated cardiomyopathy [see comments]. N Engl J Med 334:809–814.

    Article  PubMed  CAS  Google Scholar 

  95. Osterziel KJ, Strohm O, Schuler J, Fnednch M, Hanlein D, Willenbrock R, Anker SD, Poole-Wilson PA, Ranke MB, Dietz R. 1998. Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 351:1233–1237.

    Article  PubMed  CAS  Google Scholar 

  96. Butler AA, Le Roith D. 2001. Control of growth by the somatropic axis: growth hormone and the insulin-like growth factors have related and independent roles. Annu Rev Physiol 63:141–164.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seigo Izumo MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shioi, T., McMullen, J.R., Izumo, S. (2004). Role of the Phosphoinositide 3-Kinase Pathway in Cardiac Hypertrophy. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics