Sperm Motility: Patterns and Regulation

  • Srinivasan Vijayaraghavan


Spermatozoa are the only cells destined to be exported from the body. Thus, motility is an essential property of fertile spermatozoa. It enables ejaculated spermatozoa to traverse the female reproductive tract and reach the site of fertilization; it is also essential for penetration of the outer investments of the oocyte including the zona pellucida. This chapter will describe the following aspects of mammalian sperm motility: structure of the flagellum, development of motility in the epididymis, changes in sperm movement patterns following ejaculation and during fertilization, biochemical mechanisms regulating sperm kinetic activity, methods to quantitate sperm motility, and a brief outline of the methods available to alter sperm motility in vitro.


Sperm Motility Seminal Plasma Epididymal Spermatozoon Fibrous Sheath Bovine Spermatozoon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gibbons I.R. Cillia and flagellaofeukaryotes. J Cell Biol 1981; 91:107s–124sPubMedCrossRefGoogle Scholar
  2. 2.
    Satir, P. “Basis of Flagellar Motility in Spermatozoa: Current Status.” In The Spermatozoon, D.W. Fawcet, M. Bedford, eds. Urban and Schwarzenberg, 1979. pp 81–90Google Scholar
  3. 3.
    Porter M.E., Sale W.S. The 9+2 axoneme anchors multiple inter-arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 2000; 151:F37–F42PubMedCrossRefGoogle Scholar
  4. 4.
    Gibbons I.R. Introduction: dynein ATPase. Cell Motility 1982; Supplement 1:87–93CrossRefGoogle Scholar
  5. 5.
    Lindemann C.B., Kanous K.S. A model for flagellar motility. Int Rev of Cytology 1987; 173:1–73CrossRefGoogle Scholar
  6. 6.
    Fawcett D.W. The mammalian spermatozoon. Dev Biol 1975; 44:394–436PubMedCrossRefGoogle Scholar
  7. 7.
    Fawcett D.W. A comparative view of sperm ultrastructure. Biol Reprod 1970; Supplement 2:90–127PubMedCrossRefGoogle Scholar
  8. 8.
    Eddy E.M., O’Brian D.A. “The Spermatozoon,” In Physiology of Reproduction, E. Knobil, J.D. Neill, eds. NY: Raven Press, 1993, pp 29–78Google Scholar
  9. 9.
    Bedford J.M. “Maturation, Transport, and Fate of Spermatozoa in the Epididymis.” In Handbook of Physiology and Endocrinology, Volume V, 1975, pp 303–313Google Scholar
  10. 10.
    Orgebin-Crist M.-C. Sperm maturation in rabbit epididymis. Nature 1967; 216:816–818PubMedCrossRefGoogle Scholar
  11. 11.
    Bedford J.M., Hoskins D.D. “The Mammalian Spermatozoon: Morphology, Biochemistry and Physiology.” In Marshall’s Physiology of Reproduction, G.E. Lamming, ed. Edinburgh, London, Melbourne, New York: Churchill Livingstone, 1990, pp 379.Google Scholar
  12. 12.
    Pariset C.C., Feinberg J.M.F., Dacheux J.L., Weinman, S.J. Changes in calmodulin level and cAMP-dependent protein kinase activity during epididymal maturation of ram spermatozoa. J Reprod Fert 1985; 74:102–112.CrossRefGoogle Scholar
  13. 13.
    Lindemann C.B., Kanous K.S. Regulation of mammalian sperm motility. Arch Androl 1989;23:1–22PubMedCrossRefGoogle Scholar
  14. 14.
    Yeung C.H. Effects of cyclic AMP on the motility of mature and immature hamster epididymal spermatozoa studied by reactivation of the demembranated cells. Gamete Res 1984; 9:99–114CrossRefGoogle Scholar
  15. 15.
    Mohri H., Yanagimachi R. Characteristics of motor apparatus in testicular, epididymal and ejaculated spermatozoa. Exper Cell Res 1980; 127:191–196CrossRefGoogle Scholar
  16. 16.
    Hoskins D., Stephens D., Hall M. Cyclic adenosine 3’:5’-monophosphate and protein kinase levels in developing bovine spermatozoa. J Reprod Fert 1974; 37:131–133CrossRefGoogle Scholar
  17. 17.
    Vijayaraghavan S., Critchlow L.M., Hoskins D.D. Evidence for a role for cellular alkalinization in the cyclic adenosine 3’,5’-monophosphate-mediated initiation of motility in bovine caput spermatozoa. Biol Reprod 1985; 32:489–500PubMedCrossRefGoogle Scholar
  18. 18.
    Vijayaraghavan S., Hoskins D.D. Changes in the mitochondrial calcium influx and efflux properties are responsible for the decline in sperm calcium during epididymal maturation. Mol Reprod Dev 1990; 25:186–194PubMedCrossRefGoogle Scholar
  19. 19.
    Hoskins D., Hall M., Munsterman D. Induction of motility in immature bovine spermatozoa by cyclic AMP phosphodiesterase inhibitors and seminal plasma. Biol Reprod 1975; 13:168–176PubMedCrossRefGoogle Scholar
  20. 20.
    Usselman M.C., Cone R.A. Rat sperm are mechanically immobilized in the caudal epididymis by “immobilin,” a high molecular weight glycoprotein. Biol Reprod 1983; 29:1241–1253PubMedCrossRefGoogle Scholar
  21. 21.
    Acott T.S., Carr D.W. Inhibition of bovine spermatozoa by caudal epididymal fluid: ii. interaction of pH and a quiescence factor. Biol Reprod 1984; 30:926–935PubMedCrossRefGoogle Scholar
  22. 22.
    Carr D.W., Acott T.S. Inhibition of bovine spermatozoa by caudal epididymal fluid: i. studies of a sperm motility quiescence factor. Biol Reprod 1984; 30:913-925PubMedCrossRefGoogle Scholar
  23. 23.
    Mann, T., Lutwak-Mann, C. “Male Reproductive Function and the Composition of Semen. In MaleRreproductive Function and Semen. NY: Springer Verlag, 1981, pp 1– 34.CrossRefGoogle Scholar
  24. 24.
    Yanagimachi R. “Mammalian Fertilization.” In The Physiology of Reproduction, E. Knobil, J.D. Neill, eds. NY: Raven Press Ltd., 1994, pp 189-378.Google Scholar
  25. 25.
    Katz D.F., Yanagimachi R. Movement characteristics of hamster and guinea pig spermatoz oa upon attachment to the zona pellucida. Biol Reprod 1981; 25:785-791PubMedCrossRefGoogle Scholar
  26. 26.
    Katz D.F., Yanagimachi R., Dresdner R.D. Movement characteristics and power output of guinea-pig and hamster spermatozoa in relation to activation. J Reprod Fert 1978; 52:167-172CrossRefGoogle Scholar
  27. 27.
    Katz D.F. Characteristics of sperm motility. Ann NY Acad Sci 1991; 637:409–423PubMedCrossRefGoogle Scholar
  28. 28.
    Buck J., Sinclair M.L., Schapal L., Cann M.J., Levin L.R. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci USA 1999; 96:79–84PubMedCrossRefGoogle Scholar
  29. 29.
    Chen Y., Cann M.J., Litvin T.N., Iourgenko V., Sinclair M.L., Levin L.R., Buck J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 2000; 289:559–560CrossRefGoogle Scholar
  30. 30.
    Okamura N., Tajima Y., Onoe S., Sugita Y. Purification of bicarbonate-sensitive sperm adenylylcyclase by 4-acetamido-4’-isothiocyanostilbene-2,2’-disulfonic acid affinity chromatography. J Biol Chem 1991; 266:17754–17759PubMedGoogle Scholar
  31. 31.
    Cohen, P. “Classification of Protein-Serine/Threonine Phosphatases: Identification and Quantitation in Cell Extracts.” In Methods in Enzymology, Vol. 201, Chapter 33, T. Hunter, B.M. Sefton, eds. NY: Academic Press, Inc., 1991.Google Scholar
  32. 32.
    Vijayaraghavan S., Stephens D.T., Trautman K., Smith G.D., Khatra B., da Cruz E., Silva E.F., Greengard P. Sperm Motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity. Biol Reprod 1996; 54:709–718PubMedCrossRefGoogle Scholar
  33. 33.
    Smith G.D., Wolf D.P., Trautman K.C., da Cruz E., Silva E.F., Greengard P., Vijayaraghavan S. Primate sperm contain protein phosphatase 1, a biochemical mediator of motility. Biol Reprod 1996; 54:719–27.PubMedCrossRefGoogle Scholar
  34. 34.
    Smith G.D., Wolf D.P., Trautman K.C., Vijayaraghavan S. Motility potential of macaque epididymal sperm: the role of protein phosphatase and glycogen synthase kinase-3 activities. J Androl 2000; 20:47–53.Google Scholar
  35. 35.
    Stephens D.T., Hickman R., Hoskins D.D. Description, validation and performance characteristics of a new computer automated sperm motility analysis system. Biol Reprod 1988; 38:577–586PubMedCrossRefGoogle Scholar
  36. 36.
    Stephens, D.T., Hoskins, D.D., Controls of Sperm Motility: Biological and Clinical Aspects. Boca Raton: CRC Press, Inc., 1990, pp 251–260.Google Scholar
  37. 37.
    Mortimer S.T. A critical review of the physiological importance and analysis of sperm movement in mammals. Hum Reprod Update 1997; 5:403–439CrossRefGoogle Scholar
  38. 38.
    Vijayaraghavan S., Hoskins D.D. Regulation of bovine sperm motility and cyclic adenosine 3’, 5’-monophosphate by adenosine and its analogues. Biol Reprod 1986; 34:468–477.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Srinivasan Vijayaraghavan
    • 1
  1. 1.Kent State UniversityKentUSA

Personalised recommendations