The Management of Wetlands for Biological Diversity: Four Principles

  • Paul A. Keddy
  • Lauchlan H. Fraser


There are vast areas of major kinds of wetlands: swamps, marshes, fens, and bogs (Table 2.1). Because plant and animal species, vegetation, and wetland types are so variable, it may seem difficult to treat all of these together. Far too often, one encounters specialist publications on the plants or animals of a particular bog, fen, marsh, mire, reed swamp or aquatic community; these balkanized treatments detract from the general principles involved in managing wetlands. Furthermore, because so much focus in wetland management is placed on fish and wildlife production this too often takes precedence over other ecological objectives. Large expanses of wetland vegetation are generally ignored or treated in passing as “aquatic plants.” Our objective here is to try to pull together all these disparate vegetation types, species, and physiographic types, and present four general principles necessary for managing them to maintain and enhance biological diversity.


Water Level Species Richness Great Lake Standing Crop Plant Species Richness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auclair, A. N., Bouchard, A., &Pajaczkowski, J. (1972). Plant composition and species relations on the Huntingdon Marsh, Quebec.Canadian Journal of Botany,51, 1231–1247.CrossRefGoogle Scholar
  2. Bacon, P. R. (1978).Flora and fauna of the Caribbean. Trinidad: Key Caribbean Publications.Google Scholar
  3. Bernatowiscz, S., & Zachwieja, J. (1966). Types of littoral found in the lakes of the Masurian and Suwalki Lakelands.Komitet Ekolgiezny-Polska Akademia Nauk XIV, 519–545.Google Scholar
  4. Boston, H. L. (1986). A discussion of the adaptation for carbon acquisition in relation to the growth strategy of aquatic isoetids.Aquatic Botany,26: 259–270.CrossRefGoogle Scholar
  5. Brown, J. H. (1995).Macroecology. Chicago: University of Chicago Press.Google Scholar
  6. Brown, J. H., & Maurer, B. A. (1987). Evolution of species assemblages: Effects of energetic constraints and species dynamics on the diversification of North American avifauna.American Naturalist,130, 1–17.CrossRefGoogle Scholar
  7. Brown, J. H., & Maurer, B. A. (1989). Macroecology: The division of food and space among species on continents.Science,243, 1145–1150.PubMedCrossRefGoogle Scholar
  8. Brunton, D. F., & Di Labio, B. M. (1989). Diversity and ecological characteristics of emergent beach flora along the Ottawa River in the Ottawa-Hull region, Quebec and Ontario.Naturaliste Canadien,116: 179–191.Google Scholar
  9. Charlton, D. L., & Hilts, S. (1989). Quantitative evaluation of fen ecosystems on the Bruce Peninsula. In: M. J. Bardecki & N. Patterson (Eds.),Ontario wetlands: Inertia or momentum(pp. 339–354). Proceedings of conference, Ryerson Polytechical Institute, Toronto, October 21–22, 1988.Google Scholar
  10. Christensen, N. L. (1988). Vegetation of the southeastern coastal plain. In: M. G. Barbour, & W. D. Billings (Eds.),North American terrestrial vegatation(pp. 317–363) Cambridge, UK: Cambridge University Press.Google Scholar
  11. Connor, E. F. & McCoy, E. D. (1979). The statistics and biology of the species-area relationship.American Naturalist,113,791–833.CrossRefGoogle Scholar
  12. Czaya, E. (1983).Rivers of the world. Cambridge, UK: Cambridge University Press.Google Scholar
  13. Dansereau, P. (1959). Vascular aquatic plant communities of southern Quebec. A preliminary analysis.Transactions of the Northeast Wildlife Conference,10: 27–54.Google Scholar
  14. Day, R. T, Keddy, P. A., McNeill, J. & Carleton, T. (1988). Fertility and disturbance gradients: A summary model for riverine marsh vegetation.Ecology,69: 1044–1054.CrossRefGoogle Scholar
  15. Duncan, R. P. (1993). Flood disturbance and the coexistence of species in a lowland podocarp forest, south Westland, New Zealand.Journal of Ecology,81: 403–416.CrossRefGoogle Scholar
  16. Forrest, G. I., & Smith, R. A. H. (1975). The productivity of a range of blanket bog vegetation types in the northern Pennines.Journal of Ecology,63, 173–202.CrossRefGoogle Scholar
  17. Garcia, L. V, Maranon, T., Moreno, A., & Clemente, L. (1993). Above-ground biomass and species richness in a Mediterranean salt marsh.Journal of Vegetation Science,4, 417–424.CrossRefGoogle Scholar
  18. Gaudet, C. L., & Keddy, P. A. (1995). Competitive performance and species distribution in shoreline plant communities: A comparative approach.Ecology,76, 280–291.CrossRefGoogle Scholar
  19. Givnish, T. J. (1988). Ecology and evolution of carnivorous plants. In: W. B. Abrahamson (Ed.),Plant-animal interactions. New York: McGraw-Hill.Google Scholar
  20. Gleick, P. H. (2000). The world’s water 2000–2001:The biennial report on freshwater resources. Washington, DC: Island Press.Google Scholar
  21. Gorham, E. (1979). Shoot height, weight and standing crop in relation to density of monospecific plant stands.Nature,279, 148–150.CrossRefGoogle Scholar
  22. Gough, L., Grace, J. B., & Taylor, K. L. (1994). The relationship between species richness and community biomass: the importance of environmental variables.Oikos,70, 271–279.CrossRefGoogle Scholar
  23. Goulding, M. (1980).The fishes and the forest: Explorations in Amazonian natural history. Berkeley: University of California Press.Google Scholar
  24. Grace, J. B., & Pugesek, B. H. (1997). A structural equation model of plant species richness and its application to a coastal wetland.American Naturalist,149, 436–460.CrossRefGoogle Scholar
  25. Grime, J. P. (1973a). Control of species density in herbaceous vegetation.Journal of Environmental Management,1, 151–167.Google Scholar
  26. Grime, J. P. (1973b). Competitive exclusion in herbaceous vegetation.Nature,242, 344–347.CrossRefGoogle Scholar
  27. Grime, J. P. (1979).Plant strategies and vegetation processes. Chichester, UK: Wiley.Google Scholar
  28. Grubb, P. J. (1985). Plant populations and vegetation in relation to habitat disturbance and competition: problems of generalizations. In: J. White, (Ed.),The population structure of vegetation(pp. 595–621). The Hague: Junk.Google Scholar
  29. Hill, N. M., Keddy, P. A., & Wisheu, I. C. (1998). A hydrological model for predicting the effects of dams on shoreline vegetation of lakes and reservoirs.Environmental Management,22: 723–736.PubMedCrossRefGoogle Scholar
  30. Junk, W J. (1983). Ecology of swamps on the Middle Amazon. In: D. W. Goodall (Ed.),Ecosystems of the world 4B: Mires: Swamp, bog, fen and moor, (pp. 269–294) Amsterdam: Elsevier Science.Google Scholar
  31. Junk, W. J. (1986). Aquatic plants of the Amazon system. In: B. R. Davies & K. F. Walker (Eds.),The ecology of river systems, (pp. 319–337) Dordrecht, The Netherlands: Junk.Google Scholar
  32. Kadlec, R. R, & Knight, R. L. (1996).Treatment wetlands. New York: Lewis.Google Scholar
  33. Keddy, P. A. (1981). Vegetation with coastal plain affinities in Axe Lake, near Georgian Bay, Ontario.Canadian Field Naturalist 95: 241–248.Google Scholar
  34. Keddy, P. A. (1983). Shoreline vegetation in Axe Lake, Ontario: Effects of exposure on zonation patterns.Ecology,64:331–344.CrossRefGoogle Scholar
  35. Keddy, P. A. (1984). Plant zonation on lakeshores in Nova Scotia: a test of the resource specialization hypothesis.Journal of Ecology 72: 797–808.CrossRefGoogle Scholar
  36. Keddy, P. A. (1990). Competitive hierarchies and centrifugal organization in plant communities. In: J. B. Grace, & D. Tilman (Eds.),Perspectives on plant competition(pp. 265–290). San Diego: Academic Press.Google Scholar
  37. Keddy, P A. (1991). Water level fluctuations and wetland conservation. In: J. Kusler, & R. Smardon (Eds.),Wetlands of the Great Lakes: Protection and restoration policies, Status of the science(pp. 79–91). New York: Managers Inc.Google Scholar
  38. Keddy, P. A. (2000).Wetland ecology: Principles and conservation. Cambridge, UK: Cambridge University Press.Google Scholar
  39. Keddy, P. A. (2001).Competition(2nd ed.). London: Chapman & Hall.CrossRefGoogle Scholar
  40. Keddy, P. A. & Fraser, L. H. (1999). On the diversity of land plants.EcoScience,6, 366–380.Google Scholar
  41. Keddy, P. A., Gaudet, C. & Fraser, L. H. (2000). Effects of low and high nutrients on the competitive hierarchy of 26 shoreline plants.Journal of Ecology,88, 413–423.CrossRefGoogle Scholar
  42. Keddy, P. A., & Wisheu, I. C. (1989). Ecology, biogeography, and conservation of coastal plain plants: Some general principles from the study of Nova Scotian wetlands.Rhodora,91: 72–94.Google Scholar
  43. Keogh, T. M., Keddy, P. A., & Fraser, L. H. (1999). Patterns of tree species richness in forested wetlands.Wetlands,19: 639–647.CrossRefGoogle Scholar
  44. Klinkhamer, P. G. L., & de Jong, T. J. (1985). Shoot biomass and species richness in relation to some environmental factors in a coastal dune area in The Netherlands.Vegetatio,63, 129–132.CrossRefGoogle Scholar
  45. Lambert, J. D. H. (1976). Plant succession on an active tundra mud slump, Garry Island, Mackenzie River Delta, Northwest Territories.Canadian Journal of Botany,54, 1750–1758.CrossRefGoogle Scholar
  46. Lowe-McConnell, R. H. (1975).Fish communities in tropical freshwaters: Their distribution, ecology and evolution. London: Longman.Google Scholar
  47. Lowe-McConnell, R. H. (1986). Fish of the Amazon system. In: B. R. Davies & K. F. Walker (Eds.),The ecology of river systems(pp. 339–351). Dordrecht, The Netherlands: Junk.Google Scholar
  48. Lubchenko, J. (1978). Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities.American Naturalist,112, 23–39.CrossRefGoogle Scholar
  49. Marrs, R. H., Grace, J. B., & Gough, L. (1996). On the relationship between plant species diversity and biomass: A comment on a paper by Gough, Grace and Taylor.Oikos,75, 323–326.CrossRefGoogle Scholar
  50. Moore, D. R. J., & Keddy, P. A. (1989). The relationship between species richness and standing crop in wetlands: the importance of scale.Vegetatio,79: 99–106.CrossRefGoogle Scholar
  51. Moore, D. R. J., Keddy, P. A., Gaudet, C. L., & Wisheu, I. C. (1989). Conservation of wetlands: Do infertile wetlands deserve a higher priority?Biological Conservation,47: 203–217.CrossRefGoogle Scholar
  52. Muotka, T. & Virtanen, R. (1995). The stream as a habitat templet for bryophytes: Species’ distributions along gradients in disturbance and substratum heterogeneity.Freshwater Biology,33, 141–160.CrossRefGoogle Scholar
  53. Nilsson, C., Grelsson, G., Johansson, M., & Sperens, U. (1989). Patterns of plant species richness along riverbanks.Ecology,70, 77–84.CrossRefGoogle Scholar
  54. Oksanen, J. (1996). Is the humped relation between species richness and biomass an artefact due to plot size?Journal of Ecology,84, 293–295.CrossRefGoogle Scholar
  55. Painter, S., & Keddy, P. A. (1992). Effects of water level regulation on shoreline marshes: A predictive model applied to the Great Lakes. National Water Research Institute, Environment Canada, Burlington.Google Scholar
  56. Palmer, M. W, & White, P. S. (1994). Scale dependence and the species-area relationship.American Naturalist,144, 717–740.CrossRefGoogle Scholar
  57. Partel, M., Zobel, M., Zobel, K., & Van der Maarel, E. (1996). The species pool and its relation to species richness-evidence from Estonian plant communities.Oikos,75, 111–117.CrossRefGoogle Scholar
  58. Partridge, T. R., & Wilson, J. B. (1987). Salt tolerance of salt marsh plants of Otago, New Zealand.New Zealand Journal of Botany,25, 559–566.CrossRefGoogle Scholar
  59. Pearsall, W H. (1920). The aquatic vegetation of the English Lakes.Journal of Ecology,8, 163–201.CrossRefGoogle Scholar
  60. Pechmann, J. H. K., Scott, D. E., Whitfield, J., & Semlitsch, R. D. (1989). Influence of wetland hydroperiod on diversity and abundance of metamorphosing juvenile amphibians.Wetlands Ecology and Management,1: 3–11.CrossRefGoogle Scholar
  61. Penfound, W. T, & Hathaway, E. S. (1938). Plant communities in the marshlands of southeastern Louisiana.Ecological Monographs,8: 1–56.CrossRefGoogle Scholar
  62. Pielou, E. C. (1977).Mathematical ecology. New York: Wiley.Google Scholar
  63. Postel, S. L., Daily, G. C., & Ehrlich, P. R. (1996). Human appropriation of renewable fresh water.Science,271: 785–788.CrossRefGoogle Scholar
  64. Puerto, A., Rico, M., Matias, M. D., & Garcia, J. A. (1990). Variation in structure and diversity in Mediterranean grasslands related to trophic status and grazing intensity.Journal of Vegetation Science,1, 445–452.CrossRefGoogle Scholar
  65. Quinlan, C., & Mulamoottil, G. (1987). The effects of water level fluctuation on three Lake Ontario shoreline marshes.Canadian Water Resources Journal,12, 64–11.CrossRefGoogle Scholar
  66. Rejmankova, E., Pope, K. O., Pohl, M. D., & Rey-Benayas, J. M. (1995). Freshwater wetland plant communities of northern Belize: implications for paleoecological studies of Maya wetland agriculture.Biotropica,27,28–35.CrossRefGoogle Scholar
  67. Reznicek, A. A., & Catling, P. M. (1989). Flora of Long Point.Michigan Botanist,28, 99–175.Google Scholar
  68. Rosenzweig, M. L., & Abramsky, Z. (1993). How are diversity and productivity related? In: R. E. Ricklefs, & D. Schluter (Eds.),Species diversity in ecological communities(pp. 52–65). Chicago: The University of Chicago Press.Google Scholar
  69. Salo, J., Kalliola, R., Hakkinen, I, Makinen, Y., Niemela, P., Puhakka, M., & Coley, P. D. (1986). River dynamics and the diversity of Amazon lowland forest.Nature,322, 254–258.CrossRefGoogle Scholar
  70. Scharf, F. S., Juanes, F., & Sutherland, M. (1998). Inferring ecological relationships from the edges of scatter diagrams: Comparison of regression techniques.Ecology,79, 448–460.CrossRefGoogle Scholar
  71. Smith, P. G. R., Glooschenko, V., & Hagen, D. A. (1991). Coastal wetlands of three Canadian Great Lakes: inventory, current conservation initiatives, and patterns of variation.Canadian Journal of Fisheries and Aquatic Sciences,48, 1581–1594.CrossRefGoogle Scholar
  72. Spence, D. H. N. (1964). The macrophytic vegetation of freshwater lochs, swamps and associated fens. In: J. H. Burnett (ed.),The Vegetation of Scotland(pp. 306–425). Edinburgh: Oliver & Boyd.Google Scholar
  73. Strahler, A. N. (1971).The earth sciences(2nd ed.). New York: Harper & Row.Google Scholar
  74. Tilman, D. & Pacala, S. (1993). The maintenance of species richness in plant communities. In: R. E. Ricklefs & D. Schluter (Eds.),Species diversity in ecological communities(pp. 13–25). Chicago: University of Chicago Press.Google Scholar
  75. Verhoeven, J. T. A., Kemmers, R. H., & Koerselman, W. (1993). Nutrient enrichment of freshwater wetlands. In: C. C. Vos, & P. Opdam (Eds.),Landscape ecology of a stressed environment(pp. 33–59). London: Chapman & Hall.CrossRefGoogle Scholar
  76. Verhoeven, J. T. A., Koerselman, W., & Meuleman, A. F. M. (1996). Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: Relations with atmospheric inputs and management regimes.Trends in Ecology and Evolution,11: 493–497.CrossRefGoogle Scholar
  77. Vermeer, H. J. G. (1986). The effect of nutrients on shoot biomass and species composition of wetland and hayfield communities.Acta Oecologica/Oecologia Plantarum,7, 31–41.Google Scholar
  78. Vermeer, J. G., & Verhoeven, J. T. A. (1987). Species composition and biomass production of mesotrophic fens in relation to the nutrient status of the organic soil.Acta Oecologica/Oecologia Plantarum,8, 321–330.Google Scholar
  79. Vince, S. W., & Snow, A. A. (1984). Plant zonation in an Alaskan salt marsh.Journal of Ecology,72, 651–667.CrossRefGoogle Scholar
  80. Vitt, D. H. (1990). Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients.Botanical Journal of the Linnean Society,104, 35–59.CrossRefGoogle Scholar
  81. Weiher, E., & Keddy, P. A. (1995). The assembly of experimental wetland plant communities.Oikos,73: 323–335.CrossRefGoogle Scholar
  82. Weiher, E., Wisheu, I. C., Keddy, P. A., & Moore, D. R. J. (1996). Establishment, persistence, and management implications of experimental wetland plant communities.Wetlands,16, 208–218.CrossRefGoogle Scholar
  83. Weller, M. W. (1994).Freshwater Marshes: Ecology and Wildlife Management. 3rd edn. Minneapolis: University of Minnesota.Google Scholar
  84. Wheeler, B. D., & Giller, K. E. (1982). Species richness of herbaceous fen vegetation in Broadland, Morfolk in relation to the quantity of above-ground plant material.Journal of Ecology,70, 179–200.CrossRefGoogle Scholar
  85. Wheeler, B. D., & Shaw, S. C. (1991). Above-ground crop mass and species richness of the principal types of herbaceous rich-fen vegetation of lowland England and Wales.Journal of Ecology,79, 285–301.CrossRefGoogle Scholar
  86. White, D. A. 1983. Plant communities of the lower Pearl River basin, Louisiana.American Midland Naturalist,110: 381–396.CrossRefGoogle Scholar
  87. Willis, A. J. (1963). Braunton Burrows: The effects on the vegetation of the addition of mineral nutrients to the dune soils.Journal of Ecology,51, 353–374.CrossRefGoogle Scholar
  88. Wilson, S. D., & Keddy, P. A. (1986a). Species competitive ability and position along a natural stress/disturbance gradient.Ecology,67: 1236–1242.CrossRefGoogle Scholar
  89. Wilson, S. D., & Keddy, P. A. (1986b). Measuring diffuse competition along an environmental gradient: Results from a shoreline plant community.American Naturalist,127, 862–869.CrossRefGoogle Scholar
  90. Wilson, S. D., & Keddy, P. A. (1988). Species richness, survivorship, and biomass accumulation along an environmental gradient.Oikos,53, 375–380.CrossRefGoogle Scholar
  91. Wisheu, I. C, & Keddy, P. A. (1989). The conservation and management of a threatened coastal plain plant community in eastern North America (Nova Scotia, Canada).Biological Conservation,48, 229–238.CrossRefGoogle Scholar
  92. Wisheu, I. C., & Keddy, P. A. (1992). Competition and centrifugal organization of plant communities: Theory and tests.Journal of Vegetation Science,3, 147–156.CrossRefGoogle Scholar
  93. Wisheu, I. C., & Keddy, P. A. (1996). Three competing models for predicting the size of species pools: A test using eastern North American wetlands.Oikos,76, 253–258.CrossRefGoogle Scholar
  94. Wisheu, I. C., Keddy, P. A., Moore, D. J., McCanny, S. J., & Gaudet, C. L. (1991). Effects of eutrophication on wetland vegetation. In: J. Kuslor, & R. Smardon (Eds.),Wetlands of the Great Lakes: Protection and restoration policies, Status of the science(pp. 112–121). New York: Managers Inc.Google Scholar
  95. Yabe, K. (1993). Wetlands of Hokkaido. In S. Higashi, A. Osawa, & K. Kanagawa (Eds.),Biodiversity and ecology in the northernmost Japan(pp. 38–49). Hokkaido University Press.Google Scholar
  96. Yabe, K., & Onimaru, K. (1997). Key variables controlling the vegetation of a cool-temperate mire in northern Japan.Journal of Vegetation Science,8, 29–36.CrossRefGoogle Scholar
  97. Yoda, K., Kira, T., Ogawa, H., & Hozumi, K. (1963). Self-thinning in overcrowded pure stands under cultivated and natural conditions.Journal of Biology Osaka City University,14, 107–129.Google Scholar
  98. Zobel, M. (1997). The relative role of species pools in determining plant species richness: An alternative explanation of species coexistence.Trends in Ecology and Evolution,12, 266–269.PubMedCrossRefGoogle Scholar
  99. Zobel, K., & Liira, J. A. (1997). A scale-independent approach to the richness vs biomass relationship in groundlayer plant communities.Oikos,80, 325–332.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Paul A. Keddy
    • 1
  • Lauchlan H. Fraser
    • 2
  1. 1.Department of Biological SciencesSoutheastern Louisiana UniversityHammondUSA
  2. 2.Department of BiologyUniversity of AkronAkronUSA

Personalised recommendations