Calcium Binding to 5-Lipoxygenase

  • Tove Hammarberg
  • Konda Veera Reddy
  • Bengt Persson
  • Olof Rádmark

Abstract

Human 5-lipoxygenase (5L0) catalyzes the rate determining step in the cellular production of leukotrienes and lipoxins and has therefore become an important target for pharmacological treatment of inflammatory disorders (1). Regulation of 5L0 activityin vivois complex and has been shown to involve processes such as translocation to membrane structures, redox status and the presence of certain levels of calcium ions and ATP, for review see (2).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Samuelsson, B., Dahlen, S.E., Lindgren, J.A., Rouzer, C.A. and Serhan, C.N., Leukotrienes and lipoxins: structures, biosynthesis, and biological effectsScience237: 1171–6 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    Radmark, O.P., 5-Lipoxygenase, in Novel Inhibitors of Leukotrienes, G. Folco, B. Samuelsson, andR.C. Murphy, Editors. 1999, Birkhäuser Verlag: Basel. p. 1–22.Google Scholar
  3. 3.
    Reddy, K.V., Hammarberg, T. and Radmark, O., Mg2+ Activates 5-LipoxygenaseinVitro: Dependency on Concentrations of Phosphatidylcholine and Arachidonic AcidBiochemistry39: 1840–1848 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    Maruyama, K., Mikawa, T. and Ebashi, S., Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresisJournal of Biochemistry95: 511–9 (1984).PubMedGoogle Scholar
  5. 5.
    Hammarberg, T. and Radmark, O., 5-lipoxygenase binds calciumBiochemistry38: 4441–4447 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    Hummel, J.P. and Dreyer, W.J., Measurement of protein-binding phenomena by gel filtrationBiochimica Biophysica Acta63: 530–532 (1962).CrossRefGoogle Scholar
  7. 7.
    Percival, M.D., Denis, D., Riendeau, D. and Gresser, M.J., Investigation of the mechanism of non-turnoverdependent inactivation of purified human 5-lipoxygenase. Inactivation by H202 and inhibition by metal ionsEuropean Journal of Biochemistry210: 109–17 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    Noguchi, M., Miyano, M., Matsumoto, T. and Noma, M., Human 5-lipoxygenase associates with phosphatidylcholine liposomes and modulates LTA4 synthetase activityBiochimica et Biophysica Acta1215: 300–6 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    Skorey, K.I. and Gresser, M.J., Calcium is not required for 5-lipoxygenase activity at high phosphatidyl choline vesicle concentrationsBiochemistry37: 8027–34 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang, Y.Y., Hamberg, M., Radmark, O. and Samuelsson, B., Stabilization of purified human 5lipoxygenase with glutathione peroxidase and superoxide dismutaseAnal Biochem220: 28–35 (1994).PubMedCrossRefGoogle Scholar
  11. 11.
    Bordier, C., Phase separation of integral membrane proteins in Triton X-114 solutionJournal of Biological Chemistry256: 1604–7 (1981).PubMedGoogle Scholar
  12. 12.
    Gillmor, S.A., Villasenor, A., Fletterick, R., Sigal, E. and Browner, M.F., The structure of mammalian 15lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity [published erratum appears in Nat Struct Biol 1998 Mar;5(3):242]Nature Structural Biology4: 1003–9 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Tove Hammarberg
    • 1
  • Konda Veera Reddy
    • 1
  • Bengt Persson
    • 1
  • Olof Rádmark
    • 1
  1. 1.Department of Medical Biochemistry and Biophysics Karolinska InstitutetStockholmSweden

Personalised recommendations