Advertisement

Trilobites in Paleozoic Predator-Prey Systems, and Their Role in Reorganization of Early Paleozoic Ecosystems

  • Loren E. Babcock
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 20)

Abstract

Predation is a fundamental ecological process that has profound effects on the morphology, distribution, abundance, and evolution of metazoans. The earliest verified records of predation date to the Neoproterozoic-Cambrian transition interval (e.g., Conway Morris and Jenkins, 1985; Babcock, 1993a; Bengtson and Yue, 1992; Bengtson, 1994; Conway Morris and Bengtson, 1994; Nedin, 1999; Jago and Haines, in press), but the impact of predation almost certainly has a much deeper evolutionary history. Among the earliest and most widespread lines of evidence for the importance of predation in the early Paleozoic comes from the record of trilobites. As biomineralized animals, trilobites have left an excellent fossil record that extends from the latter part of the Early Cambrian (e.g., Zhang, 1987; Geyer, 1996, Geyer, 1998; Geyer and Palmer, 1995; Luo and Jiang, 1996; Hollingsworth, 1999; Geyer and Shergold, 2000; Peng and Babcock, 2000; Peng and Babcock, 2001), c. 520 Ma, to the end of the Permian (e.g., Brezinski, 1992), c. 248 Ma. Predation on and by trilobites evidently exerted influence on the morphological development of metazoans, as well as on ecosystem development, through the Paleozoic.

Keywords

Middle Devonian Lower Cambrian Trace Fossil Burgess Shale Cambrian Trilobite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlberg, P. (ed.), 1998, Guide to Excursions in Scania and Västergötland, Southern Sweden. IV Field Conference of the Cambrian Stage Subdivision Working Group, International Subcommission on Cambrian Stratigraphy, Lund Publ. Geology 141.Google Scholar
  2. Alexander, R. D., 1964, The evolution of mating behavior in arthropods, in: Insect Reproduction, Vol. 2 (K. C. Highnam, ed.), Royal Entomology Society, London, pp. 78–94.Google Scholar
  3. Allison, P. A., 1986, Soft-bodied animals in the fossil record: the role of decay in fragmentation during transport, Geology 14:979–981.Google Scholar
  4. Alpert, S. P., and Moore, J. N., 1975, Lower Cambrian trace fossil evidence for predation on trilobites, Lethaia 8:223–230.Google Scholar
  5. Anderson, L. I., and Selden, P. A., 1997, Opisthosomal fusion and phylogeny of Palaeozoic Xiphosura, Lethaia 30:19–31.Google Scholar
  6. Babcock, L. E., 1982, Original and diagenetic color patterns in two phacopid trilobites from the Devonian of New York, North American Paleontological Convention III, pp. 17–22.Google Scholar
  7. Babcock, L. E., 1993a, Trilobite malformations and the fossil record of behavioral asymmetry, J. Paleontol. 67:217–29.Google Scholar
  8. Babcock, L. E., 1993b, The right and the sinister, Nat. Hist. 102(7):32–39.Google Scholar
  9. Babcock, L. E., 1994, Systematics and phylogenetics of polymeroid trilobites from the Henson Gletscher and Kap Stanton formations (Middle Cambrian), North GreenlandGrønlands Geol. Under. Bull. 169:79–127.Google Scholar
  10. Babcock, L. E., and Chang, W. T. 1997, Comparative taphonomy of two nonmineralized arthropods: Naraoia (Nektaspida; Early Cambrian, Chengjiang Biota, China) and Limulus (Xiphosurida; Holocene, Atlantic Ocean), Bull. Nat. Mus. Natur. Hist. 10:233–250.Google Scholar
  11. Babcock, L. E., Merriam, D. F., and West, R. R., 2000, Paleolimulus, an early limuline (Xiphosurida), from Pennsylvanian-Permian Lagerstätten of Kansas and taphonomic comparison with modern Limulus, Lethaia 33:129–141.Google Scholar
  12. Babcock, L. E., and Peng S. C., 2001, Malformed agnostoid trilobite from the Middle Cambrian of northwestern Hunan, China, in: Cambrian System of South China (S. C. Peng, L. E. Babcock, and M. Y. Zhu, eds.), Press of University of Science and Technology of China, Hefei,pp. 250–251.Google Scholar
  13. Babcock, L. E., and Robison, R. A., 1988, Taxonomy and paleobiology of some Middle Cambrian Scenella (Cnidaria) and hyolithids (Mollusca) from western North America, Univ. Kansas Pal. Contrib. Pap. 121:1–22.Google Scholar
  14. Babcock, L. E., and Robison, R. A., 1989, Preferences of Palaeozoic predators, Nature 337:695–696.Google Scholar
  15. Babcock, L. E., and Speyer, S. E., 1987, Enrolled trilobites from the Alden Pyrite Bed, Ledyard Shale (Middle Devonian) of western New York, J. Paleontol. 61:539–548.Google Scholar
  16. Babcock, L. E., and Zhang W. T., 2001, Stratigraphy, paleontology, and depositional setting of the Chengjiang Lägerstatte (Lower Cambrian), Yunnan, China, in: Cambrian System of South China (S. C. Peng, L. E. Babcock, and M. Y. Zhu, eds.), Press of University of Science and Technology of China, Hefei, pp. 66–86.Google Scholar
  17. Babcock, L. E., Zhang W. T., and Leslie, S. A., 2001, The Chengjiang Biota: record of the Early Cambrian diversification of life and clues to the exceptional preservation of fossils, GSA Today 11(2):4–9.Google Scholar
  18. Bartels, C., Briggs, D. E. G., and Brassel, G., 1998, The Fossils of the Hunsrück Slate: Marine Life in the Devonian, Cambridge University Press, Cambridge.Google Scholar
  19. Bengtson, S., 1968, The problematic genus Mobergella from the Lower Cambrian of the Baltic area, Lethaia 1:325–351.Google Scholar
  20. Bengtson, S., 1994, The advent of animal skeletons, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 412–425.Google Scholar
  21. Bengtson, S., and Yue Z., 1992, Predatorial borings in late Precambrian mineralized exoskeletons, Science 257:367–369.Google Scholar
  22. Bergström, J., 1973, Organisation, life and systematics of trilobites, Fossils Strata 21:1–69.Google Scholar
  23. Bergström, J., and Levi-Setti, R., 1978, Phenotypic variation in the Middle Cambrian trilobite Paradoxides davidus Salter at Manuels, S. E. Newfoundland, Geol. Palaeontol. 12:1–40.Google Scholar
  24. Blaker, M. R., and Peel, J. S., 1997, Lower Cambrian trilobites from North Greenland, Medd. Grønland Geosci. 35:1–145.Google Scholar
  25. Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q., 2000, The Cambrian substrate revolution, GSA Today 10(9):l–7.Google Scholar
  26. Boucot, A. J., 1990, Evolutionary Paleobiology of Behavior and Coevolution, Elsevier Science Publishers, Amsterdam.Google Scholar
  27. Bowring, S. A., and Erwin, D. L., 1998, A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology, GSA Today 8(9): 1–8.Google Scholar
  28. Bradshaw, J. L., 1988, The evolution of human lateral asymmetries: new evidence and second thoughts, J. Human Evol. 17:615–637.Google Scholar
  29. Bradshaw, J. L., 1989, Hemispheric Specialization and Psychological Function, John Wiley & Sons, Chichester, U.K.Google Scholar
  30. Bradshaw, J. L., 1991, Animal asymmetry and human heredity: dextrality, tool use and language in evolution—10 years after Walker (1980), Brit. J. Psychol. 82:39–59.Google Scholar
  31. Brandt, D. S., 1980, Phenotypic Variation and Paleoecology of Flexicalymene (Arthropoda: Trilobita) in the Cincinnatian Series (Upper Ordovician) near Cincinnati, Ohio. Unpublished M.S. thesis, University of Cincinnati.Google Scholar
  32. Brandt, D. S., Meyer, D. L., and Lask, P. B., 1995, Isotelus (Trilobita) “hunting burrow” from Upper Ordovician strata, Ohio, J. Paleontol. 69:1079–1083.Google Scholar
  33. Brandt Velbel, D. S., 1985, Ichnologic, taphonomic, and sedimentologic clues to the deposition of Cincinnatian shales (Upper Ordovician), Ohio, U.S.A., in: Biogenic Structures: Their Use in Interpreting Depositional Environment (A. H. Curran, ed.), Soc. Econ. Paleontol. Mineral. Spec. Publ. 35, pp. 299–307.Google Scholar
  34. Brasier, M. D., 1979, The Cambrian radiation event, in: The Origin of Major Invertebrate Groups (M. R. House, ed.), Systematics Association Special Volume 12. Academic Press, London and New York, pp. 103–159.Google Scholar
  35. Brett, C. E., 1977, Entombment of a trilobite within a closed brachiopod shell, J. Paleontol. 51:1041–1045.Google Scholar
  36. Brezinski, D. K., 1992, Permian trilobites from west Texas, J. Paleontol. 66:924–943.Google Scholar
  37. Briggs, D. E. G., 1978, The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia, Phil. Trans. R. Soc. London B 281:429–487.Google Scholar
  38. Briggs, D. E. G., 1979, Anomalocaris, the largest known Cambrian arthropod, Palaeontology 22:631–664.Google Scholar
  39. Briggs, D. E. G., 1994, Giant predators from the Cambrian of China, Science 264:1283–1284.Google Scholar
  40. Briggs, D. E. G., and Collins, D., 1988, A Middle Cambrian chelicerate from Mt. Stephen, British Columbia, Palaeontology 31:779–798.Google Scholar
  41. Briggs, D. E. G., Erwin, D. H., and Collier, F. J., 1994, The Fossils of the Burgess Shale, Smithsonian Institution Press, Washington and London.Google Scholar
  42. Briggs, D. E. G., and Fortey, R. A., 1989, The early radiation and relationships of the major arthropod groups, Science 246:241–243.Google Scholar
  43. Briggs, D. E. G., and Whittington, H. B., 1985a, Modes of life of arthropods from the Burgess Shale, British Columbia, Trans. R. Soc. Edinburgh Earth Sci. 76:149–160.Google Scholar
  44. Briggs, D. E. G., and Whittington, H. B., 1985b, Terror of the trilobites, Nat. Hist. 94:34–39.Google Scholar
  45. Bright, R. C., 1959, A paleoecologic and biometric study of the Middle Cambrian trilobite Elrathia kingii (Meek), J. Paleontol. 33:83–98.Google Scholar
  46. Brusca, R. C, and Brusca, G. J., 1990, Invertebrates, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  47. Bruton, D. L., 1981, The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia, Phil. Trans R. Soc. London B 295:619–656.Google Scholar
  48. Bruton, D. L., and Haas, W., 1997, Functional morphology of Phacopinae (Trilobita) and the mechanics of enrollment, Paleontographica Abt. A 245:1–43.Google Scholar
  49. Buchholz, A., 2000, Die Trilobitenfauna der oberkambrischen Stufen 1 – 3 in Geschieben aus Vorpommern und Mecklenburg (Norddeutschland), Archiv für Geschiebekun. 2:697–776.Google Scholar
  50. Burling, L. D., 1917, Was the Lower Cambrian trilobite supreme?, Ottawa Natural. 31:77–79.Google Scholar
  51. Butterfield, N. J., 1995, Secular distribution of Burgess Shale-type preservation, Lethaia 28:1–13.Google Scholar
  52. Butterfield, N. J., 2002, Leanchoilia guts and the interpretation of three dimensional structures in Burgess Shale-type fossils, Paleobiology 28:155–171.Google Scholar
  53. Campbell, L. D., 1969, Stratigraphy and Paleontology of the Kinzers Formation, Southeastern Pennsylvania. Unpublished M.S. thesis, Franklin and Marshall College.Google Scholar
  54. Campbell, K. S. W., 1975, The functional anatomy of trilobites: musculature and eyes, J. Proc. R. Soc. N. S. Wales 108:168–188.Google Scholar
  55. Chatterton, B. D. E., Johanson, Z., and Sutherland, G., 1994, Form of the trilobite digestive system: alimentary structures in Pterocephalia,J. Paleontol. 68:294–305.Google Scholar
  56. Chatterton, B. D. E., and Ludvigsen, R., 1976, Silicified Middle Ordovician trilobites from the South Nahanni River area, District of Mackenzie, Canada, Palaeontographica, Abt. A 154:1–106.Google Scholar
  57. Chen J. Y., and Erdtmann, B.-D., 1991, Lower Cambrian Lagerstätte from Chengjiang, Yunnan, China: insights for reconstructing early metazoan life, in: The Early Evolution of Metazoa and the Significance of Problematic Taxa (A. M. Simonetta and S. Conway Morris, eds.), Cambridge University Press, Cambridge, pp. 57–76.Google Scholar
  58. Chen J. Y., Ramsköld, L., and Zhou G. Q., 1994, Evidence for monophyly and arthropod affinity of Cambrian giant predators, Science 264:1304–1308.Google Scholar
  59. Chen J. Y., and Zhou G. Q., 1997, Biology of the Chengjiang fauna, Nation. Mus. Nat. Hist. Bull. 10:11–105.Google Scholar
  60. Chen J. Y., Zhou G. Q., Zhu M. Y., and Yeh K Y., 1997, The Chengjiang Biota: A Unique Window of the Cambrian Explosion, National Museum of Natural Science, Taichung, Taiwan.Google Scholar
  61. Clarkson, E. N. K., 1979, The visual system of trilobites, Palaeontology 22:1–22.Google Scholar
  62. Clarkson, E. N. K., and Henry, J.-L., 1973, Structures coaptative et enroulement chez quelques trilobites ordoviciens et siluriens, Lethaia 6:105–132.Google Scholar
  63. Clarkson, E. N. K., and Whittington, H. B., 1997, Enrollment and coaptative structures, in: Treatise on Invertebrate Paleontology, Part O, Arthropoda 1, Trilobita, Revised. Volume 1: Introduction, Order Agnostida, Order Redlichiida (R. L. Kaesler, ed.), Geological Society of America and University of Kansas, Boulder, Colorado, and Lawrence, Kansas, pp. 67–74.Google Scholar
  64. Cloud, P. E., 1968, Pre-metazoan evolution and the origins of the Metazoa, in: Evolution and Environment (E. T. Drake, ed.), Yale University Press, New Haven, pp. 1–72.Google Scholar
  65. Collins, D., 1996, The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.), J. Paleontol. 70:280–293.Google Scholar
  66. Conway Morris, S., 1977, Fossil priapulid worms, Spec. Pap. Palaeontol. 20.Google Scholar
  67. Conway Morris, S., 1981, Parasites and the fossil record, Parasitology, 82:489–509.Google Scholar
  68. Conway Morris, S., 1985, Cambrian Lagerstatten: their distribution and significance, Phil. Trans. R. Soc. London B 311:49–65.Google Scholar
  69. Conway Morris, S., 1986, The community structure of the Middle Cambrian phyllopod bed (Burgess Shale), Palaeontology 29:423–467.Google Scholar
  70. Conway Morris, S., 1990, Late Precambrian and Cambrian soft-bodied faunas, Ann. Rev. Earth Planet. Sci. 18:101–122.Google Scholar
  71. Conway Morris, S., 1998, The Crucible of Creation. The Burgess Shale and the Rise of Animals, Oxford University Press, Oxford.Google Scholar
  72. Conway Morris, S., and Bengtson, S., 1994, Cambrian predators: possible evidence from boreholes, J. Paleontol. 68:1–23.Google Scholar
  73. Conway Morris, S., and Jenkins, R. J. F,, 1985, Healed injuries in Early Cambrian trilobites from South Australia, Alcheringa 9:167–177.Google Scholar
  74. Conway Morris, S., and Robison, R. A., 1986, Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain, Univ. Kansas Paleontol. Contrib. Pap. 117:1–22.Google Scholar
  75. Conway Morris, S., and Robison, R. A., 1988, More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia, Univ. Kansas Paleontol. Contrib. Pap. 122:1–48.Google Scholar
  76. Crick, R. E., 1981, Diversity and evolutionary rates of Cambrian-Ordovician nautiloids, Paleobiology 7:216–229.Google Scholar
  77. Davis, R. A., Fraaye, R. H. B., and Holland, C. H., 2001, Trilobites within nautiloid cephalopods, Lethaia, 34:37–45.Google Scholar
  78. Dean, D., Rankin, J. S., Jr., and Hoffman, E., 1964, A note on the survival of polychaetes and amphipods in stored jars of sediment, J. Paleontol. 38:608–609.Google Scholar
  79. Droser, M. L., and Bottjer, D. J., 1988, Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States, Geology 16:233–236.Google Scholar
  80. Droser, M. L., and Bottjer, D. J., 1989, Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization, Geology 17:850–852.Google Scholar
  81. Droser, M. L., Hughes, N. C., and Jell, P., 1994, Infaunal communities and tiering in Lower Palaeozoic nearshore clastic environments: trace fossil evidence from the Cambro-Ordovician of New South Wales, Lethaia 27:273–283.Google Scholar
  82. Droser, M. L., Fortey, R. A., and Xing, L., 1996, The Ordovician radiation, Am. Sci. 84:122–131.Google Scholar
  83. Eaton, R. C., Bombardieri, R. A., and Meyer, D. L., 1977, The Mauthner-initiated startle response in teleost fish,.J. Exp. Biol. 66:65–81.Google Scholar
  84. Eldredge, N., 1971, Patterns of cephalic musculature in the Phacopina (Trilobita) and their phylogenetic significance, J. Paleontol. 45:52–67.Google Scholar
  85. Erwin, D. H., 1991, Metazoan phylogeny and the Cambrian radiation, Trends Ecol. Evol. 6:131–134.Google Scholar
  86. Fedonkin, M. A., 1994, Early multicellular fossils, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 370–388.Google Scholar
  87. Fisher, D. C., 1977, Mechanism and significance of enrollment in xiphosurans (Chelicerata, Merostomata), Geol. Soc. Amer. Abstr. Progr. 9:264–265.Google Scholar
  88. Foote, M., 1991, Morphologic patterns of diversification: examples from trilobites, Palaeontology 34:41–485.Google Scholar
  89. Foote, M., 1992, Paleozoic record of morphological diversity in blastozoan echinoderms, Proc. Nat. Acad. Sci. USA 89:7325–7329.Google Scholar
  90. Fortey, R. A., 1985, Pelagic trilobites as an example of deducing the life habits of extinct arthropods, Trans. R. Soc. Edinburgh Earth Sci. 76:219–230.Google Scholar
  91. Fortey, R. A., 2000, Trilobite! Eyewitness to Evolution, Alfred A. Knopf, New York.Google Scholar
  92. Fortey, R. A., Briggs, D. E. G., and Wills, M. A., 1996, The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity, Biol. J. Linn. Soc. 57:13–33.Google Scholar
  93. Fortey, R. A., and Clarkson, E. N. K., 1976, The function of the glabellar ‘tubercle’ in Nileus and other trilobites, Lethaia 9:101–106.Google Scholar
  94. Fortey, R. A., and Owens, R. M., 1990, Trilobites, in: Evolutionary Trends (K. J. McNamara, ed.), Belhaven Press, London, pp. 121–142.Google Scholar
  95. Fortey, R. A., and Owens, R. M., 1999, Feeding habits in trilobites, Palaeontology 42:429–465.Google Scholar
  96. Fortey, R. A., and Whittington, H. B., 1989, The Trilobita as a natural group, Hist. Biol. 2:125–138.Google Scholar
  97. Gehling, J. G., 1999, Microbial mats in Proterozoic siliciclastics: Ediacaran death masks, Palaios 14:40–57.Google Scholar
  98. Gehling, J. G., and Rigby, J. K., 1996, Long expected sponges from the Neoproterozoic Ediacaran fauna of South Australia, J. Paleontol. 70:185–195.Google Scholar
  99. Geyer, G., 1993, The giant Cambrian trilobites of Morocco, Beringia 8:71–107.Google Scholar
  100. Geyer, G., 1996, The Moroccan fallotaspidid trilobites revisited, Beringia 18:89–199.Google Scholar
  101. Geyer, G., 1998, Intercontinental, trilobite-based correlation of the Moroccan early Middle Cambrian, Can. J. Earth Sci. 35:374–401.Google Scholar
  102. Geyer, G., and Palmer, A. R., 1995, Neltneriidae and Holmiidae (Trilobita) from Morocco and the problem of Early Cambrian intercontinental correlation, J. Paleontol. 69:459–474.Google Scholar
  103. Geyer, G., and Shergold, J. S., 2000, The quest for internationally recognized divisions of Cambrian time, Episodes 23: 188–195.Google Scholar
  104. Glaessner, M. F., 1984, The Dawn of Animal Life. A Biohistorical Study, Cambridge University Press, Cambridge.Google Scholar
  105. Grant, S. W. F., 1990, Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic, Amer. J. Sci. 290-A:261–294.Google Scholar
  106. Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J., 1995, Biostratigraphic and geochronologic constraints on early animal evolution, Science 270:598–604.Google Scholar
  107. Gunther, L. F., and Gunther, V. G., 1981, Some Middle Cambrian fossils of Utah, Brig. Young Univ. Geol. Stud. 28:1–87Google Scholar
  108. Han N. R., and Zhang J. L., 1991, Malformed thoracic pleurae of Redlichia (Redlichia) hupehensis Hsu, Acta Palaeontol. Sinica 30:126–128.Google Scholar
  109. Hannibal, J. T., and Feldmann, R. M., 1981, Systematics and functional morphology of oniscomorph millipedes (Arthropoda: Diplopoda) from the Carboniferous of North America, J. Paleontol. 55:730–746.Google Scholar
  110. Henry, J. L., and Clarkson, E. N. K., 1974, Enrollment and coaptation in some species of the Ordovician trilobite genus Placoparia, Fossils Strata 4:87–95.Google Scholar
  111. Hoffman, H. J., 1994, Proterozoic carbonaceous compressions (“metaphytes” and “worms”), in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 342–357.Google Scholar
  112. Hollingsworth, J. S., 1999, The problematical base of the Montezuman Stage: should the Laurentian fallotaspidids be in a non-trilobite series?, in: Laurentia 99. V Field Conference of the Cambrian Stage Subdivision Working Group, International Subcommission on Cambrian Stratigraphy (A. R. Palmer, ed.), Institute for Cambrian Studies, Boulder, Colorado, pp. 5–9.Google Scholar
  113. Hou X. G., and Bergström, J., 1997, Arthropods of the Lower Cambrian Chengjiang fauna, Southwest China, Fossils Strata 45:1–116.Google Scholar
  114. Hou X. G., Bergström, J., and Ahlberg, P., 1995, Anomalocaris and other large animals in the Lower Cambrian Chengjiang fauna of Southwest China, Geol. Fören. Stockholm Förhand. 117:162–183.Google Scholar
  115. Hou X. G., Bergström, J., Wang H. F., Feng X. H., and Chen A. L., 1999, The Chengjiang Fauna: Exceptionally Weil-Preserved Animals from 530 Million Years Ago, Science and Technology Press, Yunnan.Google Scholar
  116. Hughes, N. C., Chapman, R. E., and Adrain, J. M., 1999, The stability of thoracic segmentation in trilobites: a case study in developmental and ecological constraints, Evol. Develop. 1:24–35.Google Scholar
  117. Hughes, N. C, and Cooper, D. L., 1999, Paleobiology and taphonomic aspects of the “granulosa” trilobite cluster, Kope Formation (Upper Ordovician, Cincinnati region), J. Paleontol. 73:306–319.Google Scholar
  118. Jago, J. B., 1974, Evidence for scavengers from Middle Cambrian sediments in Tasmania, Neues Jahrb. Geol. Pälaontoi, Monatsch. 1974:13–17.Google Scholar
  119. Jago, J. B., and Haines, P. W., in press, Repairs to an injured early Middle Cambrian trilobite, Elkedra area, Northern Territory, Alcheringa.Google Scholar
  120. Jell, P. A., 1989, Some aberrant exoskeletons from fossil and living arthropods, Queensland Mus. Mem. 27:491–498.Google Scholar
  121. Jensen, S., 1990, Predation by Early Cambrian trilobites on infaunal worms—evidence from the Swedish Mickwitzia Sandstone, Lethaia 23:29–42.Google Scholar
  122. Kelley, P. H., and Hansen, T. A., 1993, Evolution of the naticid gastropod predator-prey system: an evaluation of the hypothesis of escalation, Palaios 8:358–375.Google Scholar
  123. Kelley, P. H., Kowalewski, M., and Hansen, T. A. (eds.), this volume, Predator-Prey Interactions in the Fossil Record. Kluwer Academic/Plenum Publishers, New York.Google Scholar
  124. Kesling, R. V., and Chilman, R. B., 1975, Strata and Megafossils of the Middle Devonian Silica Formation, Univ. Michigan Mus. Paleontol. Pap. Paleontol. 8:1–408.Google Scholar
  125. Knoll, A. H., 1992, The early evolution of eukaryotes: a geological perspective, Science 256:622–627.Google Scholar
  126. Knoll, A. H., 1996, Daughter of time, Paleobiology 22:1–7.Google Scholar
  127. Landing, E., Bowring, S. A., Davidek, K. L., Westrop, S. R., Geyer, G., and Heldmaier, W., 1998, Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana, Can. J. Earth Sci. 35:329–338.Google Scholar
  128. Laudon, L. R., 1939, Unusual occurrence of Isotelus gigas DeKay in the Bromide Formation (Ordovician) of southern Oklahoma, J. Paleontol. 13:211–213.Google Scholar
  129. Levi-Setti, R., 1993, Trilobites, second edition, University of Chicago Press, Chicago and London.Google Scholar
  130. Lipps, J. H., 1983, Biotic interactions in benthic Foraminifera ecosystems, in: BioticInteractions in Recent and Fossil Benthic Communities (M. J. S. Tevesz and P. L. McCall, eds.), Plenum Press, New York and London, pp. 331–376.Google Scholar
  131. Lipps, J. H., 2001, Protists and the Precambri an -Cambrian skeletonization event, in: Cambrian System of South China (S. C. Peng, L. E. Babcock and M. Y. Zhu, eds.), Press of University of Science and Technology of China, Hefei,p. 280.Google Scholar
  132. Lipps, J. H., and Signor, P. W. (eds.), 1992, Origin and Early Evolution of the Metazoa, Plenum Press, New York.Google Scholar
  133. Loeblich, A. R., Jr., 1940, An occurrence of Isotelus gigas DeKay in the Arbuckle Mountains, Oklahoma, J. Paleontol. 14:161–162.Google Scholar
  134. Luo H. L., and Jiang Z. W., 1996, The Sinian-Cambrian boundary section and the Meishucun and Chengjiang faunas in Yunnan, 30th Int. Geol. Congr. Field Trip Tl 18/381, Geological Publishing House, Beijing, pp. 1–23.Google Scholar
  135. Ludvigsen, R., 1977, Rapid repair of traumatic injury by an Ordovician trilobite, Lethaia 10:205–207.Google Scholar
  136. Ludvigsen, R., 1979, Fossils of Ontario. Part J: The Trilobites, R. Ontario Mus. Life Sci. Misc. Publ., 96 pp.Google Scholar
  137. Maliva, R. G., Knoll, A. H., and Siever, R., 1989, Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle, Palaios 5:519–532.Google Scholar
  138. Manton, S. M., 1977, The Arthropoda, Clarendon Press, Oxford.Google Scholar
  139. Martinsson, A., 1965, Aspects of a Middle Cambrian thanatotope on Öland, Geol. Fören. Stockholm Forhand. 87:181–230.Google Scholar
  140. McMahon, B. R., and Wilkens, J. L., 1975, Respiratory and circulatory responses to hypoxia in the lobster Homarus americanus, J. Exp. Biol. 62:637–655.Google Scholar
  141. McMenamin, M. A. S., 1986, The garden of Ediacara, Palaios 1:178–182.Google Scholar
  142. McMenamin, M. A. S., and McMenamin, D. L. S., 1990, The Emergence of Animals: The Cambrian Breakthrough, Columbia University Press, New York.Google Scholar
  143. Mikulic, D. G., 1994, Sheltered molting by trilobites, Geol. Soc. Amer. Abstr. Prog. 26(5):55.Google Scholar
  144. Miller, J., 1975, Structure and function of trilobite terrace lines, Fossils Strata 4:155–178.Google Scholar
  145. Miller, J., 1976, The sensory fields and life mode of Phacops rana (Green, 1832) (Trilobita), Trans. R. Soc. Edinburgh 69:337–367.Google Scholar
  146. Miller, J., and Clarkson, E. N. K., 1980, The post-ecdysial development of the cuticle and the eye of the Devonian trilobite Phacops rana milleri Stewart 1927, Phil. Trans. R. Soc. London B 288:461–480.Google Scholar
  147. Miller, R. H., and Sundberg, F. A., 1984, Boring Late Cambrian organisms, Lethaia 17:185–190.Google Scholar
  148. Müller, K. J., and Walossek, D., 1987, Morphology, ontogeny, and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden, Fossils Strata 19:1–124.Google Scholar
  149. Narbonne, G. M., 1998, The Ediacara Biota: a terminal Neoproterozoic experiment in the evolution of life, GSA Today 8(2): 1–6.Google Scholar
  150. Needham, A. E., 1952, Regeneration and Wound-Healing, Methuen, London.Google Scholar
  151. Nedin, C, 1999, Anomalocaris predation on nonmineralized and mineralized trilobites, Geology 27:987–990.Google Scholar
  152. Oehlert, D.-P., 1895, Sur les Trinucleus de 1’Ouest de la France, Bull. Soc. Géol. France ser. 3, 23:299–336.Google Scholar
  153. Osgood, R. G., Jr., 1970, Trace fossils of the Cincinnati area, Palaeontogr. Amer. 6:281–444.Google Scholar
  154. Osgood, R. G., Jr., and Drennen, W. T., 1975, Trilobite trace fossils from the Clinton Group (Silurian) of east-central New York, Bull. Am. Paleontol. 67:300–348.Google Scholar
  155. Owen, A. W., 1983, Abnormal cephalic fringes in the Trinucleidae and Harpetidae (Trilobita), Spec. Pap. Palaeontol. 30:241–247.Google Scholar
  156. Owen, A. W., 1985, Trilobite abnormalities, Trans. R. Soc. Edinburgh Earth Sci. 76:255–272.Google Scholar
  157. Palmer, A. R., 1999, Terminal Early Cambrian extinction of the Olenellina: documentation from the Pioche Formation, Nevada, J. Paleontol. 72:650–672.Google Scholar
  158. Peach, B. N., 1894, Additions to the fauna of the Olenellus-zone of the Northwest Highlands, Quart. J. Geol. Soc. London 50:661–676.Google Scholar
  159. Peng S. C., and Babcock, L. E., 2001, Cambrian of the Hunan-Guizhou region, South China, in: Cambrian System of South China (S. C. Peng, L. E. Babcock and M. Y. Zhu, eds.), Press of University of Science and Technology of China, Hefei, pp. 3–51.Google Scholar
  160. Peng S. C, and Robison, R. A., 2000, Agnostoid biostratigraphy across the Middle-Upper Cambrian boundary in Hunan, China, Paleontol. Soc. Mem. 53 (supplement to J. Paleontol. 74 (4)), 104 pp.Google Scholar
  161. Pompeckj, J., 1892, Bemerkungen über das Einrollungsvermögen der Trilobiten, Gesellsch. Natur. Württemberg Stuttgart Jahr. 48:93–101.Google Scholar
  162. Portlock, J. E., 1843, Report on the Geology of the County of Londonderry, and of Parts of Tyrone and Fermanagh. Examined and Described Under the Authority of the Master General and Board of Ordnance, Andrew Milliken, Dublin, and Longman, Brown, Green, and Longmans, London.Google Scholar
  163. Pratt, B. R., 1998, Probable predation on Upper Cambrian triiobites and its relevance for the extinction of soft-bodied Burgess Shale-type animals, Lethaia 31:73–88.Google Scholar
  164. Přibyl, A., and Vaněk J., 1981, Preliminary report on some new triiobites of the family Harpetidae Hawle and Corda (Trilobita), Cas. Pro. Min. Geol. 26:187–193.Google Scholar
  165. Purtilo, D. T., 1978, A Survey of Human Diseases, Addison-Wesley, Menlo Park, California.Google Scholar
  166. Ramsköld, L., and Edgecombe, G. D., 1991, Trilobite monophyly revisited, Hist. Biol. 4:267–283.Google Scholar
  167. Ramsköld, L., and Edgecombe, G. D., 1996, Trilobite appendage structure of Redlichia reconsidered, Alcheringa 20:269–276.Google Scholar
  168. Resser, C. E., and Howell, B. F., 1938, Lower Cambrian Olenellus Zone of the Appalachians, Geol. Soc. Am. Bull. 49:195–248.Google Scholar
  169. Robison, R. A., 1964, Late Middle Cambrian faunas from western Utah, J. Paleontol. 38:510–566.Google Scholar
  170. Robison, R. A., 1972, Mode of life of agnostid triiobites, Proc. 24th Internat. Geol. Congr. 7:33–40.Google Scholar
  171. Robison, R. A., 1984, Cambrian Agnostida of North America and Greenland, Part 1, Ptychagnostidae, Univ. Kansas Paleontol. Contrib. Pap. 109:1–59.Google Scholar
  172. Robison, R. A., 1991, Middle Cambrian biotic diversity: examples from four Utah Lagerstätten, in: The Early Evolution ofMetazoa and the Significance of Problematic Taxa (A. M. Simonetta and S. Conway Morris, eds.), Cambridge University Press, Cambridge, pp. 77–98.Google Scholar
  173. Robison, R. A., 1994, Agnostoid triiobites from the Henson Gletscher and Kap Stanton formations (Middle Cambrian), North Greenland, Grønlands Geol. Under. Bull. 169:25–77.Google Scholar
  174. Ross, R. J., Jr., 1979, Additional triiobites from the Ordovician of Kentucky, U.S. Geol. Surv. Prof. Pap. 1066D:l–13.Google Scholar
  175. Rudkin, D. M., 1979, Healed injuries in Ogygopsis klotzi (Trilobita) from the Middle Cambrian of British Columbia, R. Ontario Mus. Misc. Coll. Pap. 32:1–8.Google Scholar
  176. Rudkin, D. M., 1985, Exoskeleton abnormalities in four triiobites, Can. J. Earth Sci. 22:479–483.Google Scholar
  177. Rudkin, D. M., and Tripp, R. P., 1989, The type species of the Ordovician trilobite genus Isotelus: I. gigas Dekay, 1824, R. Ontario Mus. Life Sci. Contrib. 152:1–19.Google Scholar
  178. Ruedemann, R., and Howell, B. F., 1944, Impression of a worm on the test of a Cambrian trilobite, J. Paleontol. 18:96.Google Scholar
  179. Runnegar, B., 1982, The Cambrian explosion: animals or fossils?, J. Geol. Soc. Australia 29:395–411.Google Scholar
  180. Runnegar, B., 1989, The evolution of mineral skeletons, in: Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals (R. E. Crick, ed.), Plenum Press, New York, pp. 75–94.Google Scholar
  181. Runnegar, B., 1994, Proterozoic eukaryotes: evidence from biology and geology, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 287–297.Google Scholar
  182. Schmalfuss, H., 1978, Structure, patterns, and function of cuticular terraces in Recent and fossil arthropods, Zoomorphologie 90:19–40.Google Scholar
  183. Schram, F. R., 1986, Crustacea, Oxford University Press, Oxford.Google Scholar
  184. Seilacher, A., 1985, Trilobite paleobiology and substrate relationships, Trans. R. Soc. Edinburgh Earth Sci. 76:231–237.Google Scholar
  185. Seilacher, A., 1989, Vendozoa: organismic construction in the Proterozoic biosphere, Lethaia 22:229–239.Google Scholar
  186. Seilacher, A., and Pfluger, F., 1994, From biomates to benthic agriculture: a biohistoric revolution, in: Bio stabilization of Sediments (W. S. Krumbein et al., eds.), Bibliotheks und Informationsystem der Universität Oldenberg, Oldenberg, Germany, pp. 97–105.Google Scholar
  187. Sepkoski, J. J., 1981, A factor analytic description of the Phanerozoic marine fossil record, Paleobiology 7:36–53.Google Scholar
  188. Sepkoski, J. J., and Sheehan, P. M., 1983, Diversification, faunal change, and community replacement during the Ordovician radiations, in: Biotic Interactions in Recent and Fossil Benthic Communities (M. J. S. Tevesz and P. L. McCall, eds.), Plenum, New York, pp. 673–717.Google Scholar
  189. Shaw, F. C, 1974, Simpson Group (Middle Ordovician) trilobites of Oklahoma. Paleontol. Soc. Mem. 6 (supplement to J. Paleontol. 48(5)), 54 pp.Google Scholar
  190. Shu D. G., Geyer, G., Chen, L., and Zhang, X. L., 1995, Redlichiacean trilobites with soft-parts from the Lower Cambrian Chengjiang fauna (South China), Beringia Spec. Issue 2:203–241.Google Scholar
  191. Shu D. G., Luo H. L., Conway Morris, S., Zhang X. L., Hu S. X., Chen L., Han J., Zhu M., Li Y., and Chen L. Z., 1999, Lower Cambrian vertebrates from South China, Nature 402: 42–46.Google Scholar
  192. Shu D. G., and Zhang X. L., 1996, Kuamaia, an Early Cambrian predator from the Chengjiang Fossil Lagerstätte, J. Northwest Univ. 1996:27–33.Google Scholar
  193. Signor, P. W., III, and Brett, C. E., 1984, The mid-Paleozoic precursor to the Mesozoic marine revolution, Paleobiology 10:229–245.Google Scholar
  194. Signor, P. W., and Vermeij, G. J., 1994, The plankton and the benthos: origins and early history of an evolving relationship, Paleobiology 20:297–319.Google Scholar
  195. Sliter, W. V., 1971, Predation on benthic foraminifers, J. Foram. Res. 1:20–29.Google Scholar
  196. Sloan, R. E., 1992, Functional anatomy of Ectenaspis and the isoteline hypostome, Geol. Soc. Am. Abstr. Progr. 24(4):65.Google Scholar
  197. Šnajdr, M., 1978a, Anomalous carapaces of Bohemian paradoxid trilobites, Sb. Geol. Ved. Paleont. 20:1–31.Google Scholar
  198. Šnajdr, M., 1978b, Pathological neoplasms in the fringe of Bohemoharpes (Trilobita), Věstn. Ústřed. ústavu geolog. 53:49–50.Google Scholar
  199. Šnajdr, M., 1979a, Two trinucleid trilobites with repair of traumatic injury, Věstn. Uětřed. ústavu geolog. 54:49–51.Google Scholar
  200. Šnajdr, M., 1979b, Note on the regenerative ability of injured trilobites, Věstn. Uětřed. ústavu geolog. 54:171–173.Google Scholar
  201. Šnajdr, M., 1979c, Patologické exoskeletony vou Ordovických trilobitů Barrandienu, Cas. Národ. Muz. 148:173–176.Google Scholar
  202. Šnajdr, M., 1981, Bohemian Proetidae with malformed exoskeletons, Sb. Geol. Ved. Paleont. 24:37–61.Google Scholar
  203. Snajdr, M., 1991, On the digestive system of Deanaspis goldfussi (Barrande), Cas. Národ. Muz. 156:8–16.Google Scholar
  204. Speyer, S. E., 1988, Biostratinomy and functional morphology of enrollment in two Middle Devonian trilobites, Lethaia 21:121–138.Google Scholar
  205. Speyer, S. E., 1990a, Enrollment in trilobites, in: Evolutionary Paleobiology of Behavior and Coevolution (by A. J. Boucot), Elsevier Science Publishers, Amsterdam, pp. 450–455.Google Scholar
  206. Speyer, S. E., 1990b, Gregarious behavior and reproduction in trilobites, in: Evolutionary Paleobiology of Behavior and Coevolution (by A. J. Boucot), Elsevier Science Publishers, Amsterdam, pp. 405–409.Google Scholar
  207. Speyer, S. E., and Brett, C. E., 1985, Clustered trilobite assemblages in the Middle Devonian Hamilton Group, Lethaia 18:85–103.Google Scholar
  208. Speyer, S. E., and Chatterton, B. D. E., 1989, Trilobite larvae and larval ecology, Hist. Biol. 3:27–60.Google Scholar
  209. Sprinkle, J., 1973, Morphology and evolution of blastozoan echinoderms, Mus. Comp. Zool., Harvard Univ., Spec.Publ.,pp. 1–283.Google Scholar
  210. Stanley, S. M., 1976, Fossil data and the Precambrian-Cambrian evolutionary transition, Amer. J. Sci. 276:56–76.Google Scholar
  211. Stanley, S. M., 1999, Earth System History, W. H. Freeman and Company, New York.Google Scholar
  212. Stitt, J. H., 1983, Enrolled Late Cambrian trilobites from the Davis Formation, southeast Missouri, J. Paleontol. 57:93–105.Google Scholar
  213. Stockton, W. L., and Cowen, R., 1976, Stereoscopic vision in one eye: paleophysiology of the schizochroal eye of trilobites, Paleobiology 2:304–315.Google Scholar
  214. Størmer, L., 1931, Boring organisms in trilobite shells, Norsk Geol. Tidsskr. 12:533–539.Google Scholar
  215. Struve, W., and Flick, H., 1984, Chotecops sollei und Chotecopsferdinandi aus den devonischen Schiefern desrheinischen Gebirges, Senck. leth. 65:137–163.Google Scholar
  216. Stürmer, W., and Bergström, J., 1973, New discoveries on trilobites by x-ray, Pälaontol. Zeit. 47:104–141.Google Scholar
  217. Sun W. G., 1994, Early multicellular fossils, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 358–369.Google Scholar
  218. Thorson, G., 1950, Reproductive and larval ecology of marine bottom invertebrates, Biol. Rev. 25:1–45.Google Scholar
  219. Towe, K. M., 1973, Trilobite eyes: calcified lenses in vivo, Science 179:1007–1009.Google Scholar
  220. Tripp, R. P., and Evitt, W. R., 1986, Silicified trilobites of the family Asaphidae from the Middle Ordovician of Virginia, Palaeontology 29:705–724.Google Scholar
  221. Tshudy, D. M., Feldmann, R. M., and Ward, P. D., 1989, Cephalopods: biasing agents in the preservation of lobsters, J. Paleontol. 63:621–626.Google Scholar
  222. Valentine, J. W., 1994, The Cambrian explosion, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 401–411.Google Scholar
  223. Vermeij, G. J., 1977, The Mesozoic faunal revolution: evidence from snails, predators and grazers, Paleobiology 3:245–258.Google Scholar
  224. Vermeij, G. J., 1987, Evolution and Escalation: An Ecological History of Life, Princeton University Press, Princeton, New Jersey.Google Scholar
  225. Vermeij, G. J., 1995, Economics, volcanoes, and Phanerozoic revolutions, Paleobiology 21:125–152.Google Scholar
  226. Vidal, G., 1994, Early ecosystems: limitations imposed by the fossil record, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 298–311.Google Scholar
  227. Vorwald, G. R., 1982, Healed injuries in trilobites -- evidence for a large Cambrian predator, Geol. Soc. Am. Abstr. Progr. 14:639.Google Scholar
  228. Walcott, C. D., 1883, Injury sustained by the eye of a trilobite at the time of the moulting of the shell, Amer. J. Sci. ser. 3, 26:302 [reprinted, 1884, Annals Mag. Nat. Hist. 15:69].Google Scholar
  229. Webb, P. W., 1975, Acceleration performance of rainbow trout Salmo gairneri and green sunfish Lepomis cyanellus,J. Exp. Biol. 63:451–465.Google Scholar
  230. Wenndorf, K.-W., 1990, Homalonotinae (Trilobita) aus dem Rheinischen Unter-Devon, Palaeontographica Abt.A 211:1–184.Google Scholar
  231. Westergård, A. H., 1946, Agnostidea of the Middle Cambrian of Sweden, Sver. Geol. Unders. C 477:1–141.Google Scholar
  232. Whittington, H. B., 1975, Trilobites with appendages from the Middle Cambrian Burgess Shale, British Columbia, Fossils Strata 4:97–136.Google Scholar
  233. Whittington, H. B., 1977, The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia, Phil. Trans. R. Soc. London B 280:409–443.Google Scholar
  234. Whittington, H. B., 1980, Exoskeleton, moult stage, appendage morphology and habits of the Middle Cambrian trilobite Olenoides serratus, Palaeontology 23:171–204.Google Scholar
  235. Whittington, H. B., 1988a, Hypostomes and ventral cephalic sutures in Cambrian trilobites, Palaeontology 31:577–610.Google Scholar
  236. Whittington, H. B., 1988b, Hypostomes of post-Cambrian trilobites, Mem. New Mexico Bur. Mines Min. Resour. 44:321–39.Google Scholar
  237. Whittington, H. B., 1992, Trilobites. Fossils Illustrated, Vol. 2, Boudell Press, Woodbridge and Suffolk, U.K.Google Scholar
  238. Whittington, H. B. 1997a, Morphology of the exoskeleton, in: Treatise on Invertebrate Paleontology, Part O, Arthropoda 1, Trilobita, Revised. Volume 1: Introduction, Order Agnostida, Order Redlichiida (R. L. Kaesler, ed.), Geological Society of America and University of Kansas, Boulder, Colorado, and Lawrence, Kansas, pp. 1–67.Google Scholar
  239. Whittington, H. B., 1997b, Supposed color markings in: Treatise on Invertebrate Paleontology, Part O, Arthropoda J, Trilobita, Revised. Volume 1: Introduction, Order Agnostida, Order Redlichiida (R. L. Kaesler, ed.), Geological Society of America and University of Kansas, Boulder, Colorado, and Lawrence, Kansas, pp. 84–85.Google Scholar
  240. Whittington, H. B., 1997c, Mode of life, habits, and occurrence, in: Treatise on Invertebrate Paleontology, Part O, Arthropoda J, Trilobita, Revised. Volume 1: Introduction, Order Agnostida, Order Redlichiida (R. L. Kaesler, ed.), Geological Society of America and University of Kansas, Boulder, Colorado, and Lawrence, Kansas, pp. 137–169.Google Scholar
  241. Whittington, H. B., and Briggs, D. E. G., 1985, The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia, Phil. Trans. R. Soc. London B 306:569–609.Google Scholar
  242. Wills, M. A., Briggs, D. E. G., Fortey, R. A., and Wilkinson, M., 1995, The significance of fossils in understanding arthropod evolution, Verhand. Deutsch. Zoolog. Gesellsch. 88:203–215.Google Scholar
  243. Zhang W. T., 1987, World’s oldest Cambrian trilobites from eastern Yunnan, in: Stratigraphy and Palaeontology of Systemic Boundaries in China, Precambrian-Cambrian Boundary 1, Nanjing University Publishing House, Nanjing, pp. 1–18.Google Scholar
  244. Zhang W. T., and Hou X. G., 1985, Preliminary notes on the occurrence of the unusual trilobite Naraoia in Asia, Acta Palaeontol. Sinica 24:591–595.Google Scholar
  245. Zhang X. G., 1989, Ontogeny of an Early Cambrian eodiscid trilobite from Henan, China, Lethaia 22:13–29.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Loren E. Babcock
    • 1
  1. 1.Department of Geological SciencesThe Ohio State UniversityColumbusUSA

Personalised recommendations