Upregulation of cytochrome p450 1a2 in chronic renal failure: does oxidized tryptophan play a role?

  • Ram K. Sindhu
  • Nosratola D. Vaziri
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 527)


Earlier studies from this laboratory have shown that L-tryptophan, after oxidation by either UV-irradiation or ozone induces aryl hydrocarbon receptor (AhR) transformation and binding of the liganded AhR complex to its specific DNA recognition site, thereby inducing transcription ofCyplalgene with concomitant increase of CYP1A1 protein and activity in cells in culture. In the present investigation, we investigated the expression of CYP1A2 in the liver and kidney in chronic renal failure (CRF). The results demonstrate that CYP1A2 protein abundance was upregulated in both the liver and kidney tissues of the CRF group compared to the sham-operated controls.


Chronic Renal Failure Aryl Hydrocarbon Receptor Quinolinic Acid Aryl Hydrocarbon Receptor Ligand Chronic Renal Failure Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.J. Gonzalez, The molecular biology of cytochrome P450sPharmacol. Rev.40, 243–288 (1989).Google Scholar
  2. 2.
    F.P. Guengerich, T. Shimada, Oxidation of toxic and carcinogenic chemicals by human cytochrome P450 enzymesChem. Res. Toxicol.4, 391–407 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    M.E. McManus, R.F. Minchin, N. Sanderson, D. Schwartz, E.F. Johnson, S.S. Thoreirsson, Metabolic processing of 2-acetylaminotluorene by microsomes and six highly purified cytochrome P430 forms from rabbit liverCarcinogenesis5, 1717–1723 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    F.F. Kadlubar, G.J. Hammons, The role of cytochrome P450 in the metabolism of chemical carcinogens, in:Mammalian cytochrome P450, edited by F.P Guengerich, vol.1 (CRC Press, Boca Raton. 1987), pp. 1–54.Google Scholar
  5. 5.
    M.B. Faletto, P.L. Koser, N. Battula, G.K. Townsend, A.E. Maccubbin, H.V. Gelboin, H.f. Gurtoo. Cytochrome P3–450 cDNA encodes atlotoxin Bl-4-hydroxylaseJ. Biol. Chem.263, 12187–12189 (1988).PubMedGoogle Scholar
  6. 6.
    T. Okamoto, M. Mitsuhashi, 1. Fujita, R.K. Sindhu, Y. Kikkawa, Induction ofcutochrome P450 IAI ans 1A2 by hyperoxiaBiochem. Biophys. Res. Commun. 197,878–885 (1993).PubMedCrossRefGoogle Scholar
  7. 7.
    O.G. Khatsenko, R.K. Sindhu, Y. Kikkawa, Undemutrition during hyperoxic exposure induces CYP2E1 in rat liverArch. Toxicol. 71,684–689 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    R.K. Sindhu, H. Sakai, Y. Kikkawa, Effect of hyperoxia on rat pulmonary and hepatic cytochrome P450 monooxygenasesArch. Toxicol. 73,540–546 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    R.K. Sindhu, S. Reisz-Porszasz, O. Hankinson, Y. Kikkawa, Induction of cytochrome P450 IAl by photooxidized tryptophan in Hepa Icic7 cellsBiochemical Pharmacology52, 1883–1893 (1996).PubMedCrossRefGoogle Scholar
  10. 10.
    R.K. Sindhu, Y. Kikkawa, Superinduction of oxidized tryptophan inducible cytochrome P450 IAI by cycloheximide in Hepa Icic7 cellsIn Vitro Mol. Toxicol. 73,149–162 (1999).Google Scholar
  11. 11.
    R.K. Sindhu, R.E. Rasmussen, Y. Kikkawa, Induction of cytochrome P450 IAI by ozone-oxidized tryptophan in Hepa Icic7 cellsAdv. Exptl. Med. Biol. 467,409–418 (1999).CrossRefGoogle Scholar
  12. 12.
    R.K. Sindhu, M. Mitsuhashi, Y. Kikkawa, Induction of cytochrome P450 I A2 by oxidized tryptophan in Hepa Icic7 cellsJ. Pharmacol. Exptl. Ther. 292,1008–1014 (2000).Google Scholar
  13. 13.
    F.P. Guengerich, T. Shimada, Oxidation of toxic and carcinogenic chemicals by human cytochrome P450 enzymesChem. Res. Toxicol.4, 391–407 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    S.A. Wrighton, J.C. Stevens, The human hepatic cytochromes P450 involved in drug metabolismCritical Rev. Toxicol.22, 1–21 (1992).CrossRefGoogle Scholar
  15. 15.
    G. Silver, K.S. Krauter, Expression of cytochrome P450c and P450d mRNA in cultured rat hepatocytes. 3-Methylcholanthrene induction is regulated primarily at the post-transcriptional level,.JBiol Chem.263 11802–11807 (1988).PubMedGoogle Scholar
  16. 16.
    K. Saito, S. Fujigaki, M.P. Heyes, K. Shibata, M. Takemura, H. Fujii, H. Wada, A. Nomo, M. Seishima, Mechanism of increases in L-kynurenine and quinolinic acid in renal insufficiency.Am. J. Physiol. Renal Physiol.279, F565–F572 (2000).PubMedGoogle Scholar
  17. 17.
    N.D. Vaziri, Z. Ni, X.Q. Wang, F. Oveisi, X.J. Zhou, Downregulation of nitric oxide synthase in chronic renal insufficiency: Role of excess PTHAm. J. Physiol. Renal Physiol. 274,642–649 (1998).Google Scholar
  18. 18.
    O. Hankinson, The aryl hydrocarbon receptor complexAnnu. Rev. Pharmacol. Toxicol. 35,307–340 (1995).PubMedCrossRefGoogle Scholar
  19. 19.
    L.C. Quattrochi, T. Vu, R.H. Tukey, The human CYPIA2 gene and induction by 3-methylcholantrene: A region of DNA that supports Ah receptor binding and promoter-specific inductionJ. Biol. Chem. 269,6949–6954 (1994).PubMedGoogle Scholar
  20. 20.
    R.C. Chowdhury, N.R. Chowdhury, A.W. Wolkoff, I.M. Arias, Heme and bile pigment metabolism, in:The Liver: Biology and Pathologyedited by I.M. Arias, J.L. Boyer, N. Fausto, W.B. Jakoby, D.A. Schachter, D.A. Schafritz (Raven Press, New York, 1994), pp. 471–504.Google Scholar
  21. 21.
    M.D. Mains, Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applicationsFASEB J.2, 2557–2568 (1988).Google Scholar
  22. 22.
    K.A. Nath, G. Balla, G.M. Vercellotti, J. Balla, H.S. Jacob, M.D. Levitt, M.E. Rosenberg, Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat J. Clin. Invest . 90, 267–270(1992).PubMedCrossRefGoogle Scholar
  23. 23.
    T. lyanagi, T. Watanabe, Y. Uchiyama, The 3-methylcholanthrene-inducible UDP-glucuronosyltranferase defficiency in the hyperbilirubinemic rat (Gunn rat) is caused by a-1 frameshift mutationJ. Biol. Chem. 264,21302–21307 (1989).Google Scholar
  24. 24.
    J. Kapitulnik, J.D. Ostrow, Stimulation of bilirubin catabolism in jaundiced Gunn rats by an inducer of microsomal mixed-function monooxygenasesProc. Natl. Acad. Sci. U.S.A. 75,682–685 (1978).PubMedCrossRefGoogle Scholar
  25. 25.
    F. De Matteis, T. Trenti, A.H. Gibbs..1.B. Greig, Inducible bilirubin-degrading system in the microsomal fraction of rat liverMol. Pharmacol. 35,831–838 (1989).PubMedGoogle Scholar
  26. 26.
    J. Kapitulnik, F. Gonzalez, Marked endogenous activation of the CYPIAI and CYPIA2 genes in the congenitally jaundiced Gunn ratMol. Pharmacol. 43,722–725 (1993).PubMedGoogle Scholar
  27. 27.
    C.J. Sinai, J R. Bend, Aryl hydrocarbon receptor-dependent induction of Cypla1 by bilirubin in mouse hepatoma Icic7 cellsMol. Pharmacol. 52,590–599 (1997).Google Scholar
  28. 28.
    D. Phelan, G.M. Winter, W.J. Rogers, J.C. Lam, M.S. Denison, Activation of the Ah receptor signal transduction pathway by bilirubin and biiiverdinArch. Biochem. Biophys. 357,I55–163 (1998).CrossRefGoogle Scholar
  29. 29.
    N.D. Vaziri, Z. Ni, F. Oveisi, K. Liang, R. Pandian, Enhanced nitric oxide inactivation and protein nitration by reactive oxygen species in renal insufficiencyHypertension 39,135–41 (2002).PubMedCrossRefGoogle Scholar
  30. 30.
    H.V. Gelboin, Benzo[a]pyrene metabolism, activation and carcinogenesis: Role and regulation of mixed-function oxidases and related enzymesPharmacol. Rev. 60,1107–1166 (1980).Google Scholar
  31. 31.
    P. Ball, R. Knuppen, Catecol oestrogen (2-and 4-hydroxyestrogens): Chemistry, biogenesis, metabolism, occurance and physiological significanceActa Endocrinol. 93 (suppl.) 232,1–127 (1980).Google Scholar
  32. 32.
    D. Stack, J. Byun, M.L. Gross, E.G. Rogan, E.L. Cavalieri, Molecular characteristics of catecol estrogen quinines in reactions with deoxyribonucleosidesChem. Res. Toxicol. 9,851–859 (1996).PubMedCrossRefGoogle Scholar
  33. 33.
    E.L. Cavalieri, D.E. Stack, P.D. Devanesan, R. Todorovic, I. Dwivedy, S. Higginbotham, S.L.Johansson, K.D. Patil, M.L. Gross, J.K. Gooden, R. RamanathanR.L.Cerny, E.G. Rogan, Molecular origin of cancer: Catecol estrogen-3,4-quinones as endogenous tumor initiatorsProc. Natl. Acad. Sci. U.S.A. 94,10937–10942 (1997).PubMedCrossRefGoogle Scholar
  34. 34.
    K-M Li, P.D. Devanesan, E.G. Rogan, E.L. Cavalieri, Formation of the depurinating 4-hydroxyestradiol (4-OHE2)-I-N7Gua and 4-OHE2-1-N3Ade adducts by reaction of E2–3,4-quinone with DNA.Proc. Am. Assoc. Cancer Res. 39,636 (1998).Google Scholar
  35. 35.
    M.V. Pahl, N.D. Vaziri, In:Handbook of dialysisedited by J.T. Daugirdas, T.S. Ing, second edition (Little Brown Publisher, Boston, 1994), pp. 537–544.Google Scholar
  36. 36.
    M.J. Thirman, J.H. Albrecht, M.A. Krueger, R.R. Erickson, D.L.Cherwitz, S.S. Park, H.V. Gelboin, J.L. Holtzman, Induction of CYPIAI and formation of toxic metabolites of benzopyrene by rat aorta: A possible role in atherogenesisProc. Natl. Acad. Sci. U.S.A. 91,5297–5401 (1994).Google Scholar
  37. 37.
    S.I. Hogg, A. Cryer, Aortic arylhydrocarbon hydroxylase activity atherosclerosis-susceptible species.Comp. Biochem. Physiol. 73B,669–671 (1982).Google Scholar
  38. 38.
    .B.Paigen, P.A. Hlomes, A. Morrow, D.Mitchell, Effect of 3-methylcholanthrene on atherosclerosis in two congenie strains of mice with different susceptibilities to methylcholanthrene-induced tumors, Cancer Res. 46,3321–3324 (1986).PubMedGoogle Scholar
  39. 39.
    A. Penn, C. Snyder, Arteriosclerotic plaque development is promoted by polynuclear aromatic hydrocarbonsCarcinogenesis 9,2185–2189 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Ram K. Sindhu
    • 1
  • Nosratola D. Vaziri
    • 1
  1. 1.Division of Nephrology/HypertensionDepartment of Medicine,University of California at IrvineIrvine

Personalised recommendations