Advertisement

Recent Advances in Physiological and Pathological Significance of tryptophan-Nad+Metabolites: lessons from insulin-producing pancreatic ß-Cells

  • Hiroshi Okamoto
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 527)

Abstract

In the early 1980s we found that streptozotocin and alloxan, typical diabetogenic agents, induce pancreatic 13-cell DNA strand breaks through the formation of free radicals. The breaks induce DNA repair involving the activation of poly(ADP-ribose) polymerase (PARP), which uses NAD+as a substrate. As a result, the intracellular levels of NAD+fall dramatically. The fall in NAD+inhibits cellular functions including insulin synthesis and secretion, and thus the (3-cell ultimately dies. We subsequently proposed that maintenance of the NAD+level is essential for the synthesis and secretion of insulin, and presented a unifying model for 3-cell damage and its prevention (The Okamoto model), in which PARP activation plays an essential role. Recently, the model was reconfirmed by experiments using PARP knockout mice and has been recognized as providing the basis for necrotic death of various cells and tissues. In 1993, we found that cyclic ADP-ribose (cADPR), a metabolite of NAD+is a second messenger for intracellular Ca’ mobilization for insulin secretion by glucose, and proposed a novel mechanism of insulin secretion, the CD38-cADPR signal system. Recently, various physiological phenomena from animal to plant cells become understandable in terms of this signal system.

Keywords

Insulin Secretion Pancreatic Islet PARP Inhibitor Kynurenic Acid PARP Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Okamoto, F. Okada, O. Hayaishi, Kynurenine metabolism in hyperthyroidism-A biochemical basis for the low NAD(P) level in hyperthyroid rat liver-J. Biol. Chem.246, 7759–7763 (1971).PubMedGoogle Scholar
  2. 2.
    Y. Kotake, Jr., S. Tani, Studies on xanthurenic acid III. Xanthurenic acid in the urine of diabetic patientsJ. Biochem. (Tokyo)40, 295–298 (1953).Google Scholar
  3. 3.
    E. Ragazzi, C.V. Costa, L. Caparrotta, M. Biasiolo, A. Bertazzo, G. Allegri, Enzyme activities along the tryptophan-nicotinic acid pathway in alloxan diabetic rabbitsBiochim. Biophys. Acta1571, 9–17 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Okamoto, S. Takasawa, Recent advances in the Okamoto model: The CD38-cyclic ADP-ribose signal system and the Reg-Reg receptor system in ß-cellsDiabetes(in press) 2002.Google Scholar
  5. 5.
    H. Yamamoto, Y. Uchigata, H. Okamoto, Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic isletsNature294, 284–286 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Yamamoto, Y. Uchigata, H. Okamoto, DNA strand breaks in pancreatic islets byin vivoadministration of alloxan or streptozotocinBiochem. Biophys. Res. Commun.103, 1014–1020 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    H. Okamoto, Regulation of proinsulin synthesis in pancreatic islets and a new aspect to insulin-dependent diabetesMo.l Cell. Biochem.37, 43–61 (1981).CrossRefGoogle Scholar
  8. 8.
    Y. Uchigata, H. Yamamoto, A. Kawamura, H. Okamoto, Protection by superoxide dismutase, catalase, and poly(ADP-ribose) synthetase inhibitors against alloxan-and streptozotocin-induced islet DNA strand breaks and against the inhibition of proinsulin synthesisJ. Biol. Chem.257, 6084–6088 (1982).PubMedGoogle Scholar
  9. 9.
    H. Okamoto, Molecular basis of experimental diabetes: degeneration, oncogenesis, and regeneration of pancreatic B-cells of islets of LangerhansBioEssays2, 15–21 (1985).CrossRefGoogle Scholar
  10. l0.
    K. Ueda, O. Hayaishi, ADP-ribosylationAnn. Rev. Biochem.54, 73–100 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Yamamoto, H. Okamoto, Protection by picolinamide, a novel inhibitor of poly(ADP-ribose) synthetase, against both streptozotocin-induced depression of proinsulin synthesis and reduction of NAD content in pancreatic isletsBiochem. Biophys. Res. Commun.95, 474–481 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    M.J. Charron, S. Bonner-Weir, Implicating PARP and NAD’ depletion in type I diabetesNature Med.5, 269–270 (1999).PubMedCrossRefGoogle Scholar
  13. 13.
    V. Burkart, Z.Q. Wang, J. Radons, B. Heller, Z. Herceg, L. Stingl, E.F. Wagner, H. Kolb, Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocinNature Med.5, 314–319 (1999).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Masutani, H. Suzuki, N. Kamada, M. Watanabe, O. Ueda, T. Nozaki, K. Jishage, T. Watanabe, T. Sugimoto, H. Nakagama, T. Ochiya, T. Sugimura, Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetesPNAS96, 2301–2304 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    A.A. Pieper, D.J. Brat, D.K. Krug, C.C. Watkins, A. Gupta, S. Blackshaw, A. Verma, Z.Q. Wang, S.H. Snyder, Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetesPNAS96, 3059–3064 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Okamoto, H. Yamamoto, S. Takasawa, C. Inoue, K. Terazono, K. Shiga, M. Kitagawa, Molecular mechanism of degeneration, oncogenesis and regeneration of pancreatic B-cells of islets of Langerhans, in:Lessons from Animal Diabetes IIedited by E. Shafrir and A.E. Renold (John Libbey & Company Ltd, London, 1988), pp. 149–157.Google Scholar
  17. 17.
    H. Okamoto, The molecular basis of experimental diabetes, in:Molecular biology of the islets of Langerhans.edited by H. Okamoto (Cambridge University Press, Cambridge, 1990), pp. 209–231.CrossRefGoogle Scholar
  18. 18.
    T. Takamura, I. Kato, N. Kimura, T. Nakazawa, H. Yonekura, S. Takasawa, H. Okamoto, Transgenic mice overexpressing type 2 nitric oxide synthase in pancreatic 13 cells develop insulin-dependent diabetes without insulitisJ. Biol. Chem.273, 2493–2496 (1998).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Germain, I. Scovassi, G.G. Poirier, Role of poly(ADP-ribose) polymerase in apoptosis, in:Cell Death—The Role of Poly(ADP-ribose) polymerase—edited by C. Szabo (CRC Press, Boca Raton, 2000), pp. 209–225.Google Scholar
  20. 20.
    S. Takasawa, H. Okamoto, Pancreatic B-Cell death, regeneration and insulin secretion: Roles of poly(ADP-ribose) polymerase and cyclic ADP-riboseInt. J. Exp. Diabet. Res. 379–96 (2002).CrossRefGoogle Scholar
  21. 21.
    B. Sauter, M.L. Albert, L. Francisco, M. Larsson, S. Somersan, N. Bhardwaj, Consequences of cell death: Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cellsJ. Exp. Med.191, 423–433 (2000).PubMedCrossRefGoogle Scholar
  22. 22.
    R.E. Cocco, D.S. Ucker, Distinct modes of macrophage recognition for apoptotic and necrotic cells are not specified exclusively by phosphatidylserine exposureMol. Biol. Ce!.!12, 919–930 (2001).Google Scholar
  23. 23.
    S. Takasawa, K. Nata, H.Yonekura, H. Okamoto, Cyclic ADP-ribose in insulin secretion from pancreatic B-cellsScience259, 370–373 (1993).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Takasawa, A. Tohgo, N. Noguchi, T. Koguma, K. Nata, T. Sugimoto, H. Yonekura, H. Okamoto, Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATPJ. Biol. Chem.268, 26052–26054 (1993).PubMedGoogle Scholar
  25. 25.
    A. Tohgo, H. Munakata, S. Takasawa, K. Nata, T. Akiyama, N. Hayashi, H. Okamoto, Lysine 129 of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) participates in the binding of ATP to inhibit the cyclic ADP-ribose hydrolaseJ. Biol. Chem.272, 3879–3882 (1997).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Takasawa, T. Akiyama, K. Nata, M. Kuroki, A. Tohgo, N. Noguchi, K. Kobayashi, I. Kato, T. Katada, H. Okamoto, Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Cat’ mobilization in normal and diabetic 13-cellsJ. Biol. Chem.273, 2497–2500 (1998).PubMedCrossRefGoogle Scholar
  27. 27.
    I. Kato, Y. Yamamoto, M. Fujimura, N. Noguchi, S. Takasawa, H. Okamoto, CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+Ji and insulin secretionJ. Biol. Chem.274, 1869–1872 (1999).PubMedCrossRefGoogle Scholar
  28. 28.
    M.S. Islam, O. Larsson, P.O. Berggren, S. Takasawa, K. Nata, H. Yonekura, H. Okamoto, A. Galione, Cyclic ADP-ribose in B cellsScience262, 584–586 (1993).PubMedCrossRefGoogle Scholar
  29. 29.
    G.A. Rutter, J.-M. Theler, C.B. Wollheim, Cat*stores in insulin-secreting cells: lack of effect of cADP riboseCell Calcium16, 71–80 (1994).PubMedCrossRefGoogle Scholar
  30. 30.
    M.S, Islam, P.O. Berggren, Cyclic ADP-ribose and the pancreatic beta cell: where do we stand?Diabetologia40, 1480–1484 (1997).PubMedCrossRefGoogle Scholar
  31. 31.
    H. Okamoto, S. Takasawa, K. Nata, The CD38-cyclic ADP-ribose signalling system in insulin secretion: Molecular basis and clinical implicationsDiabetologia40, 1485–1491 (1997).PubMedCrossRefGoogle Scholar
  32. 32.
    K.J. Mitchell, P. Pinton, A. Varadi, C. Tacchetti, E.K. Ainscow, T. Pozzan, R. Rizzuto, G.A. Rutter, Dense core secretory vesicles revealed as a dynamic Cat’ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaeraJ. Cell. Biol.155, 41–51 (2001).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Varadi, G.A. Rutter, Dynamic imaging of endoplasmic reticulum Cat’ concentration in insulin-secreting MIN6 cells using recombinant targeted cameleons: Roles of sarco(endo)plasmic reticulum Cat’-ATPase (SERCA)-2 and ryanodine receptorsDiabetes51, S190–S201 (2002).PubMedCrossRefGoogle Scholar
  34. 34.
    N.H. An, M.K. Han, C. Um, B.H. Park, B.J. Park, H.K. Kim, U.H. Kim, Significance of ecto-cyclase activity of CD38 in insulin secretion of mouse pancreatic islet cellsBiochem. Biophys. Res. Commun.282, 781–786 (2001).PubMedCrossRefGoogle Scholar
  35. 35.
    H. Okamoto, S. Takasawa, K. Nata, 1. Kato, A. Tohgo, N. Noguchi, Physiological and pathological significance of the CD38-cyclic ADP-ribose signaling systemChem. Immunol.75, 121–145 (2000).PubMedCrossRefGoogle Scholar
  36. 36.
    S. Takasawa, H. Okamoto, The CD38-cyclic ADP-ribose signal system in pancreatic ß-cells. The discovery and biological significance of a novel signal system in mammalian cells, in:Cyclic ADP-Ribose and NAADP: Structure Metabolism and Functionsedited by H.C. Lee (Kluwer, Dordrecht, 2002), in press.Google Scholar
  37. 37.
    K. Yagui, F. Shimada, M. Miura, N. Hashimoto, Y. Suzuki, Y. Tokuyama, K. Nata, A. Tohgo, F. Ikehata,S. Takasawa, H. Okamoto, H. Makino, Y. Saito, A. Kanatsuka, A missense mutation in the CD38 gene, a novel factor for insulin secretion: Association with Type Il diabetes mellitus in Japanese subjects and evidence of abnormal function when expressed in vitroDiabetologia41, 1024–1028 (1998).PubMedCrossRefGoogle Scholar
  38. 38.
    F. Ikehata, J. Satoh, K. Nata, A. Tohgo, T. Nakazawa, 1. Kato, S. Kobayashi, T. Akiyama, S. Takasawa,T. Toyota, H. Okamoto, Autoantibodies against CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) which impair glucose-induced insulin secretion in non-insulin dependent diabetes patientsJ. Clin. Invest.102, 395–401 (1998).PubMedCrossRefGoogle Scholar
  39. 39.
    C. Pupilli, S. Giannini, P. Marchetti, R. Lupi, A. Antonelli, F. Malavasi, S. Takasawa, H. Okamoto, E. Ferrannini, Autoanitibodies to CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in Caucasian patients with diabetes: Effects on insulin release from human isletsDiabetes48, 2309–2315 (1999).PubMedCrossRefGoogle Scholar
  40. 40.
    R. Mallone, E. Ortolan, G. Baj, A. Funaro, S. Giunti, E. Lillaz, F. Saccucci, M. Cassader, P. CavalloPerin, F. Malavasi, Autoantibody response to CD38 in Caucasian patients with type 1 and type 2 diabetes: immunological and genetic characterizationDiabetes50, 752–762 (2001).PubMedCrossRefGoogle Scholar
  41. 41.
    A. Antonelli, G. Baj, P. Marchetti, P. Fallahi, N. Surico, C. Pupilli, F. Malavasi, E. Ferrannini, Human anti-CD38 autoantibodies raise intracellular calcium and stimulate insulin release in human pancreatic isletsDiabetes50, 985–991 (2001).PubMedCrossRefGoogle Scholar
  42. 42.
    Y. Yonemura, T. Takashima, K. Miwa, I. Miyazaki, H. Yamamoto, H. Okamoto, Amelioration ofDiabetes mellitusin partially depancreatized rats by poly(ADP-ribose) synthetase inhibitors: Evidence of islet B-cell regenerationDiabetes33, 401–404 (1984).PubMedCrossRefGoogle Scholar
  43. 43.
    K. Terazono, H. Yamamoto, S. Takasawa, K. Shiga, Y. Yonemura, Y. Tochino, H. Okamoto, A novel gene activated in regenerating isletsJ. Biol. Chem.263, 2111–2114 (1988).PubMedGoogle Scholar
  44. 44.
    T. Watanabe, H. Yonekura, K. Terazono, H. Yamamoto, H. Okamoto, Complete nucleotide sequence of humanreggene and its expression in normal and tumoral tissues: Theregprotein, pancreatic stone protein, and pancreatic thread protein are one and the same product of the geneJ. Biol. Chem.265, 7432–7439 (1990).PubMedGoogle Scholar
  45. 45.
    S. Kobayashi, T. Akiyama, K. Nata, M. Abe, M. Tajima, N.J. Shervani, M. Unno, S. Matsuno, H. Sasaki, S. Takasawa, H. Okamoto, Identification of a receptor forReg (Regenerating Gene)protein, a pancreatic ß-cell regeneration factorJ. Biol. Chem.275, 10723–10726 (2000).PubMedCrossRefGoogle Scholar
  46. 46.
    T. Watanabe, Y. Yonemura, H. Yonekura, Y. Suzuki, H. Miyashita, K. Sugiyama, S. Moriizumi, M. Unno, O. Tanaka, H. Kondo, A.J. Bone, S. Takasawa, H. Okamoto, Pancreatic beta-cell replication and amelioration of surgical diabetes by Reg proteinPNAS91, 3589–3592 (1994).PubMedCrossRefGoogle Scholar
  47. 47.
    D.J. Gross, L. Weiss, I. Reibstein, J. van den Brand, H. Okamoto, A. Clark, S. Slavin, Amelioration of diabetes in nonobese diabetic mice with advanced disease by Linomide-induced immunoregulation combined with Reg protein treatmentEndocrinology139, 2369–2374 (1998).PubMedCrossRefGoogle Scholar
  48. 48.
    H. Okamoto, TheReggene family and Reg proteins: With special attention to the regeneration of pancreatic ß-cellsJ. Hepatobiliary Pancreat. Surg.6, 254–262 (1999).PubMedCrossRefGoogle Scholar
  49. 49.
    M. Unno, K. Nata, N. Noguchi, Y. Narushima, T. Akiyama, T. Ikeda, K. Nakagawa, S. Takasawa, H. Okamoto, Production and characterization of Reg knockout mice: Reduced proliferation of pancreatic ß-cells in Reg knockoutmice Diabetesin press (2002).Google Scholar
  50. 50.
    T. Akiyama, S. Takasawa, K. Nata, S. Kobayashi, M. Abe, N.J. Shervani, T. Ikeda, K. Nakagawa, M.Unno, S. Matsuno, H. Okamoto, Activation ofReggene, a gene for insulin-producing 13-cell regeneration: Poly(ADP-ribose) polymerase binds Reg promoter and regulates the transcription by autopoly(ADP-ribosyl)ationPNAS98, 48–53 (2001).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Hiroshi Okamoto
    • 1
  1. 1.Department of BiochemistryTohoku University Graduate School of MedicineMiyagiJapan

Personalised recommendations