In Situ Analysis of the Thermal Elimination Reaction in the Synthesis of Poly(p-phenylene vinylene)(PPV) and PPV Derivatives

  • Georgia A. Arbuckle-Keil
  • Yolanda Liszewski
  • James Wilking
  • Bing Hsieh


In situ spectroscopy is an important tool to characterize polymers synthesized via a precursor route. Highly conjugated polymers such as poly(p-phenylene vinylene) (PPV) and PPV derivatives are commonly prepared from a precursor polymer because the final polymers are very insoluble and intractable. Preparation in the precursor form enables the polymer materials to be cast as films. The PPV polymers are obtained from the precursor forms using a thermal elimination reaction. The exact conditions of the reaction are important as they influence the properties of the resultant polymer. The details of this thermal elimination reaction have been analyzed using thermal gravimetric analysis (TGA) coupled with infrared analysis of the evolved gas products. In situ infrared spectroscopy of the precursor films during thermal conversion to the polymers has provided further details about the elimination reaction. We have characterized PPV synthesized from a tetrahydrothiophenium monomer (sulfonium precursor route) nd via the xanthate precursor route. PPV derivatives under study include poly (2,5- dimethoxy-p-phenylene vinylene) and poly(phenoxy phenylene vinylene).

poly(p-phenylene vinylene) PPV thermal elimination precursor route poly(2,5-dimethoxy-p-phenylene vinylene) poly(phenoxy phenylene vinylene) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Murase, T. Ohnishi, T. Noguchi, and M. Hirooka, Synth. Met. 17, 639 (1987).CrossRefGoogle Scholar
  2. 2.
    K. Pichler, Philos, Trans. R. Soc. London, Ser.A 355, 829 (1997).CrossRefGoogle Scholar
  3. 3.
    R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature, 397, 121 (1999).CrossRefGoogle Scholar
  4. 4.
    J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. D. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature, 347, 539 (1990).CrossRefGoogle Scholar
  5. 5.
    R. H. Friend, G. J. Denton, J. J. M. Halls, N. T. Harrison, A. B. Holmes, A. Kohler, A. Lux, S. C. Moratti, and K. Pichler, Solid State Commun., 102(2–3), 249 (1997).CrossRefGoogle Scholar
  6. 6.
    M. Angelopoulos, IBM J. Res. & Dev. 45, 57 (2002).CrossRefGoogle Scholar
  7. 7.
    H. Shirakawa, Angew. Chem. Int. Ed. 40, 2574 (2001).CrossRefGoogle Scholar
  8. 8.
    A. G. MacDiarmid, Angew. Chem. Int. Ed. 40, 2581(2001).CrossRefGoogle Scholar
  9. 9.
    A. J. Heeger, Angew. Chem. Int. Ed. 40, 2591 (2001).CrossRefGoogle Scholar
  10. 10.
    J. G. Park, G. T. Kim, V. Krstic, B. Kim, S. H. Less, S. Roth, M. Burghard, and Y. W. Park, Synth. Met. 119, 53 (2001).CrossRefGoogle Scholar
  11. 11.
    J. H. Schon, A. Dodabalapur, Z. Bao, C. Kloc, O. Schenker, and B. Batlogg, Nature 410, 189(2001).CrossRefGoogle Scholar
  12. 12.
    B. R. Hsieh, Polymeric Materials Encyclopedia (1996), 9, 6537.Google Scholar
  13. 13.
    A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angew. Chem. Int. Ed. 37, 402 (1998).CrossRefGoogle Scholar
  14. 14.
    R. A. Wessling, and R. G. Zimmerman, U.S. Patent 3,401, 152 (1968).Google Scholar
  15. 15.
    S. Son, A. Dodabalapur, A. J. Lovinger, and M. E. Galvin, Science 269, 376 (1995).CrossRefGoogle Scholar
  16. 16.
    W. J. Swatos, and B. Gordon III, Polym. Preprints 31, 505 (1990).Google Scholar
  17. 17.
    H. V. Shah, and G. A. Arbuckle, Macromolecules 32, 1413 (1999).CrossRefGoogle Scholar
  18. 18.
    G. A. Arbuckle-Keil, Y. Liszewski, J. Peng, and B. Hsieh, Polym. Preprints 41, 826 (2000).Google Scholar
  19. 19.
    G. A. Arbuckle-Keil, Y. Liszewski, J. Wilking, and B. Hsieh, Polym. Preprints, 42(1), 306(2001).Google Scholar
  20. 20.
    J. B. Schlenoff, and L. Wang, Macromolecules 24, 6653 (1991).CrossRefGoogle Scholar
  21. 21.
    D. A. Halliday, P. L. Burn, R. H. Friend, and A. B. Holmes, J. Chem. Soc, Chem.Commun. 1685 (1992).Google Scholar
  22. 22.
    Y. Liszewski, J. Wilking, B. Hsieh, G. A. Arbuckle-Keil, in preparation.Google Scholar
  23. 23.
    P. L. Burn, D. D. C. Bradley, A. R. Brown, R. H. Friend, and Holmes, A.B. Synth. Met 41,261(1991).CrossRefGoogle Scholar
  24. 24.
    J. Wilking, B. Hsieh, and G. A. Arbuckle-Keil, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Georgia A. Arbuckle-Keil
    • 1
  • Yolanda Liszewski
    • 1
  • James Wilking
    • 1
  • Bing Hsieh
    • 2
  1. 1.Department of Chemistry, RutgersThe State University of New JerseyCamdenUSA
  2. 2.Canon R & D Center AmericasSan JoseUSA

Personalised recommendations