Advertisement

Inverse Doping Problems for Semiconductor Devices

  • Martin Burger
  • Heinz W. Engl
  • Peter A. Markowich
Conference paper

Abstract

This paper is devoted to a class of inverse problems arising in the testing of semiconductor devices, namely the identification of doping profiles from indirect measurements of the current or the voltage on a contact. In mathematical terms, this can be modeled by an inverse source problem for the drift-diffusion equations, which are a coupled system of elliptic or parabolic partial differential equations.

We discuss these inverse problems in a stationary and a transient setting and compare these two cases with respect to their mathematical properties. In particular , we discuss the identifiability of doping profiles in the model problem of the unipolar drift-diffusion system. Finally, we investigate the important special case of a piecewise constant doping profile, where the aim is to identify the p-n junctions, i.e., the curves between regions where the doping profile takes positive and negative values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.T.Banks, K.Kunisch, Estimation Techniques for Distributed Parameter Systems (Birkhäuser, Basel, Boston, 1989).zbMATHCrossRefGoogle Scholar
  2. [2]
    E.Beretta, S.Vessella, Stable determination of boundaries from Cauchy data, SIAM J. Math. Anal. 30 (1998), 220-232.MathSciNetCrossRefGoogle Scholar
  3. [3]
    F.Brezzi, L.D.Marini, P.Pietra Two-dimensional exponential fitting and applications in drift-diffusion models, SIAM J. Numer. Anal. 26 (1989), 1342-1355.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    M.Burger, H.W.Engl, P.Markowich, P.Pietra, Identification of doping profiles in semiconductor devices, Inverse Problems (2001), to appear.Google Scholar
  5. [5]
    M.Burger, P.Markowich, Identification of doping profiles from transient measurements, in preparation.Google Scholar
  6. [6]
    M.Cheney, D.Isaacson, J.C. Newell, Electrical impedance tomography, SIAM Review 41 (1999), 85-101.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    H.W.Engl, O.Scherzer, Convergence rate results for iterative methods for solving nonlinear ill-posed problems, in D.Colton, H.W. Engl, A.Louis, J.McLauglin, W.Rundell, eds., Surveys on Solution Methods for Inverse Problems (Springer, Vienna, 2000).Google Scholar
  8. [8]
    M.Hinze, R.Pinnau, Optimal control of the drift-diffusion model for semiconductor devices , Math. Models and Methods in Applied Sciences (2001), to appear.Google Scholar
  9. [9]
    A.Jüngel, Quasi-hydrodynamic Semiconductor Equations, Progress in Nonlinear Differential Equations (Birkhäuser, Boston, Basel, 2001).Google Scholar
  10. [10]
    N.Khalil, ULSI Characterization with Technology Computer-Aided Design (PhD-Thesis, Technical University Vienna, 1995).Google Scholar
  11. [11]
    V.Isakov, Inverse Problems for Partial Differential Equations (Springer, New York, 1998).zbMATHGoogle Scholar
  12. [12]
    P.A.Markowich, The Stationary Semiconductor Device Equations (Springer, Wien, New York, 1986).Google Scholar
  13. [13]
    P.A.Markowich, C.A.Ringhofer, Stability of the linearized transient semiconductor device equations, Z. Angew. Math. Mech. 67 (1987), 319-332.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    P.A.Markowich, C.A.Ringhofer, C.Schmeiser, Semiconductor Equations (Springer, Wien, New York, 1990).zbMATHCrossRefGoogle Scholar
  15. [15]
    A.l.Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Mathematics 143 (1996), 71-96.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    C.Schmeiser, Voltage-current characteristics of multi-dimensional semiconductor devices , Quarterly of Appl. Math. 4 (1991), 753-772.MathSciNetGoogle Scholar
  17. [17]
    S.Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Wien, New York, 1984).CrossRefGoogle Scholar
  18. [18]
    M.Stockinger,R.Strasser, R.Plasun, K.Wild,S .Selberherr, A qualitative study on optimized MOSEET doping profiles, Proc. of SISPAD 98 (Springer, 1998), 77-80.Google Scholar
  19. [19]
    M.Stockinger, R.Strasser, R.Plasun, A.Wild, S.Selberherr, Closed-loop MOSEET doping profile optimization for portable systems, Proceedings Intl. Conf. on Modeling and Simulation of Microsystems, Semiconductors, Sensors, and Actuators (San Juan, 1999), 411-414.Google Scholar
  20. [20]
    W.R. Van Roosbroeck, Theory of flow of electrons and holes in germanium and other semiconductors, Bell Syst. Tech. J. 29 (1950), 560-607.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Martin Burger
    • 1
  • Heinz W. Engl
    • 1
  • Peter A. Markowich
    • 2
  1. 1.Institut für IndustriemathematikJohannes Kepler Universität LinzLinzAustria
  2. 2.Institut für MathematikUniversität WienAustria

Personalised recommendations